1 Introduction

In this thesis we shall look at two different problems concerning the distribution of prime

numbers. Two famous conjectures regarding the primes are:

e The twin prime conjecture, which asserts that there are infinitely many primes p for

which p + 2 is also a prime.

e The conjecture that the interval [z, z + \/z] always contains at least one prime when-

ever z is sufficiently large (z > 117 might be sufficient).

Although it appears to be impossible to turn these conjectures into theorems with present
methods, it is possible to get quantitative results through sieve methods that show us how
”far” we are from a solution. The above conjectures have been attacked in different ways;
here we shall give a new upper bound for the number of pairs of twin primes below z of the
form

(1) mo(z) < k(1 + ce)i2 for every x > xo(¢)
log” x

(the constant k we give is new) and a result concerning the second conjecture of the form ” The

interval [w, x + :c%“} always contains a number with a prime factor > 22/ for z > x,(¢)”.

The first nontrivial result regarding twin primes was given by Brun in 1919. He devised
a rather complicated sieve method which gives (1) with a large k. A weaker, yet startling
corollary of this is that whether or not there are infinitely many pairs of twin primes, the

sum Y (% + zﬁ) over all pairs (p,p+ 2) of twin primes converges. Selberg introduced a



sieve method which is simpler, and for many purposes more efficient. As an application, (1)

holds with k£ = 16C'y where (5, called the twin prime constant, is defined by

1
C, :H (1 - H) = 0.6601618158...

p>3

z

log7s 18 an

It has been conjectured (for example, by Hardy and Littlewood) that 2C,
asymptotically correct formula for the number of pairs of twin primes below z. (The constant
C5 has been calculated with high accuracy; see [W1].) It is plausible that if one can give a
positive lower bound for 75 (z) (and thus prove the twin prime conjecture), then one can also
give a good upper bound. Attempts to give a best possible upper bound (as in this thesis)
therefore carry valuable indications as to whether the twin prime conjecture is within reach.
Alas, it doesn’t seem to be at the moment.

However, a combination of Selberg’s method with the Bombieri-Vinogradov Theorem is
enough to replace 16 by 8 in the upper bound. I shall return to this theorem and other
essential tools in Chapter 2. Compared to the reduction by a factor 2 here, only small
improvements have been made since this was discovered in the 1960’s. Pan [P] replaced
8 by 7.9280 on using the switching principle - a method involving rewriting one or more
of the terms in the Buchstab identity. (Alt. spelling: Bukhshtab.) Chen [C] used a more
advanced version and obtained 7.8342. Iwaniec [12] found a new form of the error term in the
linear sieve which allowed further improvements, even without using the switching principle.
Fouvry and Iwaniec [F3] gave & = 7.5556, Fouvry [F1] gave 2 ~ 7.5294 and Bombieri,
Friedlander and Iwaniec [B4] gave 7. The superior last paper has literally been a ”starting

point” for the further improvements which have been done (also the one we present here).
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Fouvry and Grupp [F2] added the switching principle to the calculations and obtained 6.908
- more accurate calculations give 6.9075. Wu [W2] applied a more advanced version of the
switching principle and obtained 6.8354.

We shall apply a method of Heath-Brown in order to get an improvement. The method in-
volves replacing the characteristic function for prime numbers by a function more manageable
with the available sieve machinery. The method has previously been used by Heath-Brown
[H3] in his work on the problem about primes in short intervals. (Ironically, we shall not
use this method in the treatment of that problem.) One disadvantage with this method is
that, although it is clear that we can improve on Bombieri et al.’s estimate 7, it is not highly
compatible with the switching principle. It turns out that we can combine it with Fouvry
and Grupp’s approach, but not with Wu’s. It could therefore be regarded as pure luck that
the constant we end up with in the end is 6.8325, which is only slightly better than Wu’s
result.

Our treatment of the twin prime problem contains a new result on the existence of subsets
of a set of positive real numbers with sums in certain intervals. This is necessary in order to
be able to use Heath-Brown’s method.

There have been several different approaches to the second conjecture. The most common
is possibly the one already mentioned - to give a largest possible constant ¢ such that the
interval (x,:v +x%+6} always contains an integer with a prime factor larger than z' for

15

x > xo(g). Results of this type date back to Ramachandra, who gave t = 5z = 0.5769... in

[R1] (although it appears that % — & =0.5773... — ¢ is permissible), and later 2 = 0.625 in



[R2]. (In fact, he did this with 22 +¢ replaced by z2.) Jutila [J] gave ¢ = 2 —£=10.666... —¢.
Balog improved this to 0.730... in [B1] and to 0.772... in [B2]. Balog, Harman and Pintz
[B3] gave ¢t = 0.82 and noted that 0.824 is attainable with refined calculations. Heath-Brown
[H4] noted that ¢ = 2 — ¢ = 0.8333... — & can be obtained through a combination of Jutila’s
method and his own generalized Vaughan identity [H3], and gave ¢t = 1t — e = 0.91666... — ¢

on applying the method mentioned before. Later, Heath-Brown and Jia [H5] obtained t =

H —e=0.9444... — ¢ on applying certain mean-value theorems, and Harman [H2] obtained
t= % = 0.95 on using a ”role reversal trick”. The part of our approach which is new, is an

investigation of the four-dimensional terms in the iterated Buchstab identity. We also use
Harman’s role reversal trick, and we put some effort into making the calculations as accurate

as possible. Thus we find that ¢t = % = 0.96 is admissible. Without the role reversal trick

I obtained ¢t = g—f = 0.9508..., and this seemed to be very close to being optimal. Here

we encounter some difficulties which make it hard to say just how far we are from a ”best

possible” result. But at least I think that, for example, % ~ 0.9615 is currently out of reach.

The calculation of the constants we obtain in both these problems involve lots of numerical
integration. The improvement over the best previous result is very small for the twin prime
problem, and the margin with which our result regarding almost-primes in intervals holds is
also very small. It is therefore extremely important to be able to do the integration with high
accuracy. It is essential that the method of integration is simple and efficient at the same

time. We have chosen a special case of the Newton-Cotes Quadrature Formulas, namely:

To+6AT

A
/ y(x)dx ~ ﬁ (41yo + 216y; + 27ys + 272y3 + 27Ty, + 216ys + 41ys)

Zo



where y; = y (o + iAx). See [K1], p. 771-772.



2 Preliminaries

In this Chapter, I will go through the most important background results, without labelling
each result as a ”lemma”.
First, the Prime Number Theorem: Let m(x) denote the number of prime numbers < z.

Then,

Define

logp if n is a power of a prime p
A(n) =

0 otherwise

(called the von Mangoldt function), and

Y(wiga)= > Aln)

n<z,n=a(mod q)

The Prime Number Theorem may be restated as
¥ (2;1,0) ~

Let A be a finite set of positive integers. The expression S(A, z) stands for the number
of elements in A4 with no prime factor < z. A, stands for the set of integers u for which
du € A. The number of elements in A could be written as |A| or S(A, 1) but is normally
written as X.

Throughout the text, p always denotes a prime number, e.g., ]<—[ z% is the product over

p<m

all primes p less than m of 1%' As usual, € always denotes a "small” positive number, and

can normally be replaced by o(1).



I have chosen to treat the problem about primes in small intervals first, as the methods
involved are not quite as deep as for the twin prime problem. An essential tool here is the
Buchstab identity:

S(Az) = S(Aw)— Y S(A,p) 0<w< 2)
w<p<z

The proof is trivial: The first term on the RHS counts the elements with no prime factor
< w, and the second term counts the terms whose smallest prime factor is in [w, z). We can
iterate this identity, i.e., we can apply it to the last term and possibly repeat the procedure.
This leads to

S(-A’ Z) = S(-A’ w)_ Z S(Aplaw)-i_ Z S(Aplmaw) -

w<p1<z w<pa<p1<2

+ Z S(Aplpz---Pk’pk)

wL<pE<...<p2<p1<2

One could also have introduced different w-values.

In Chapter 3 we shall see that some of the terms involved here can be estimated asymp-
totically. The idea is then to deduce from Buchstab’s identity a valid inequality S(A, z) >
> D, E... where all the terms on the RHS can be estimated asymptotically and have a
positive sum.

When dealing with twin primes, we resort to deeper results from sieve theory. I shall not
attempt to derive the established results concerning the linear sieve. For any integer d, choose
w(d) so that “’Td) approximates ‘“;t(—d‘, and define Ry = |Ay| — @X, Wi(z) =]] (1 - %) and

p<z

P(z) =]] p - this is standard sieve terminology. Following Iwaniec, we deal with a linear
p<z



sieve if the following inequalities hold:

W(w) _ logz (1+ K >;

W(z) ~ logw log w
w<p<lza>2 log 3w

which are to hold for all z > w > 2 with some constants K, L > 1. The ”standard” way
of treating the twin prime problem is to take A to be the set {p + 2 | p < z}, which gives

w(p) = ;5 for odd primes p, w(2) = 0 and w(d) =[] w(p) for square-free integers d. This

pld
gives
-2 -1 2C
W(z): ]%N202Hp ~ 712
3<p<Lz p p<z erlogz

where Cy was defined on page 2; see Chapter 3 of [H1] for details. For the parameters D

log

logz , and we then have

and z, we put s =
S(A,z) < XW(2){F(s)+ A(s,K,D)} + R(A, D)

S(A,z) = XW(2){f(s) — A(s, K, D)} — R(A, D)

where the functions F(s) and f(s) (due to Jurkat and Richert) are continuous and satisfy

(

F(s)=2-,0<s<3
f(s)=0,0<s<2
d%(sF(s))zf(s—l),s>3

i (3f(s) = F(s — 1), s> 2

\

Here, the first error term A(s, K, D) tends to zero as s or D approaches infinity and K

remains constant. R(A, D) is defined to be >’ |R4|. We are now almost ready to
d<D, d|P(z)
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obtain the constant 8 previously announced as the upper bound for % What we need
log“ z

is that the error term doesn’t become too big if D < 72 ¢ say, and taking z to be any number

between D3%¢ and D2~¢ then gives:

(2) ma(z) < S(A,2) + O(2) < (1 +o(1)){W(2)F(s)} X

= (1+0(1))8C;

:(1+0(1)){802} v z

logz ) logx log® x

The result that takes care of the error term here is known as the Bombier:i- Vinogradov

Theorem, and says that

w(l‘;q,a)—m <K

max
a,q)=1
qSQ( )

x ‘ x

log” z

for any A > 0 with @ = ﬁx, where B and K depend on A alone.

log®

A function related to F' and f is the Buchstab (or Bukhshtab) function w(s) which is

continuous and satisfies

w(s)=1Lfor0<s<2

s

L (sw(s)) = w(s—1) for s > 2

If s > 1, then the number of integers < z with no prime factor < zs is asymptotically

Sw(8)5e55 this is equivalent to the Prime Number Theorem.

Iwaniec [12] found a new form of the error term in the linear sieve. First, we need to
define well factorable functions. Let Q be any positive integer, and let A be an arithmetic
function defined for the integers from 1 to (). Suppose it has the property that for any @,

Q2> 1, Q1Q2 = @ (@1 and @, are not necessarily integers) there exist two functions A\, Ao

supported in [1, [@1]] and [1, [@Q2]] respectively such that |A;| < 1, [Ay] < 1 and A = Ay * Ao,



ie.,

Q1 Q2
Z M) _ [z:] A(qr) [z:] A2(g2)
g=1 ¢ a=1 a q2=1 e

Then we say that A is well factorable of level (). In the paper just referred to, an example
of a well factorable function can be found.

When dealing with convolutions (e.g., A = A; x \y), we often refer to the components as
"factors” (A; is thus a factor in A in the example).

Iwaniec proved that for 0 < 6 < § and s = ll%gg—f we have

S(A,z) < XW(z) {F(S) + 0 ((5 + 5_86K(10gQ)7%) } + Z Z Mg R,

I<exp(863)q|P(2)

S(A,2) = XW() {£(s) = 0 (6 4+ % g @) 5) } = > 3 Ma)R,

I<exp(86—3)q|P(2)

where each ); is well factorable of level (); note that the parameter D is typically replaced
by @ when we deal with well factorable functions. With the absolute sign being replaced
by multiplication by a well factorable function, it is possible to improve on the Bombieri-
Vinogradov Theorem. Indeed, Bombieri et al. [B4] proved that for a # 0, ¢ > 0 and
Q= x%’s, we have

5 @ (wloi.0) - 57 ) < altoga)

(g,0)=1

for any well factorable function A of level (Q and any A > 0. The constant implied in <
depends at most on ¢, ¢ and A. Whereas it is easy to see that this is sufficient to allow
us to replace 8 by 7 in (2), our task will be to see how much improvement we can pull
out of Bombieri et al.’s methods on using more ”"manageable” functions than . This is

"legal” as long as they are strictly bigger than v (or, equivalently, some other function
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which has a ”direct” connection to 7(n)). Although we won’t worry about the technical
parts of Bombieri et al.’s method, let me mention that it is based on the dispersion method,
Fourier analysis and Kloosterman sums, rather than the ”large sieve inequality” on which
the Bombieri-Vinogradov Theorem is based.

When working with problems of this kind, it is often convenient to avoid having to deal
with numbers with too small factors. This is done using the fundamental lemma of sieve
theory: Let D > 2, z = DY* with s > 3. There exist two sequences {)\j}dSD and {)\;}dSD
such that
Al <1
(A x1)(n) =1= (A" %1) (n) if n has no prime factor < z
(A7 % 1) (n) <0< (AT x1) (n) otherwise

> A4 =] (1-1) (140 (exp(—slog 5)))

\ <D p<z

In the end, we will also need to apply the switching principle. We start by deriving an
inequality of Pan, used by Fouvry and Grupp, with an improvement noted by Wu. Suppose
0 < 21 < z. The first two iterations of the Buchstab identity give

S(A, Z) A 21 Z S plapl

21<p1<2

S(.A, Z) .A Z1 Z S Ap,zl Z S(Ap1p3>p3)

21<p<z 21<p3<p1<2

Adding together yields

258(A, 2) =25(A, z) — {Z S.Ap,zl} { Z S(Apips, P3)— Z S(A pl,pl}

z21<p<z 21<p3<p1<2 21<p1<z
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=2S5(A,z1) — Q + M, say. We have

M = Z S(Aplps’p?’)_ Z S(Ap3’p3)

21<p3<p1<2 21<p3<z

= ( Z S('APIPS’ p1)+ Z S('Aplpzpsa p2)>

21<p3<p1<z 21<p3<p2<p1<z

_( Z S(Ap3vz)+ Z S('Aplpsﬂpl)>

21<p3<z 21<p3<p1<z

< Z S(Apipaps> P2)

21<p3<p2<p1<z

= Y Sppep)t > S(Ayye,ps)

21<p3<p2<p1<z 21 <p3<p1<z
On replacing the last term by the trivial upper bound O (:—1), we get (with A being as

above)

wmmgsmﬂyux@gsMJQ—;h+;h+m@+0(i)

21

where Qy = > S(Ap,pops> P2)- The trick here is to let B be the sequence of numbers
21<p3<p2<p1<z

less than z of the form p;pspsm — 2 where z; < p3 < ps < p1 < z and every prime factor in

m is bigger than p,. We then have

N[

Q = S(B,z2) + O(z?)

and in this way we can achieve a better upper bound.

12



3 Plan for ’almost-primes in intervals’

I shall now outline how one shows that there is always a number in the interval (3:, T+ x%“]
with a prime factor > 2z~ for § = . Let K be a large fixed number, and let P = z%¥.
Rather than sifting the integers in the interval Z(z) = (x, T+ x%“} directly, we shall look
for primes in A, the set of integers n for which nm € Z(z) for some m for which the
K
coefficient for m~=° in ( > p_s) is positive (counted with their multiplicity). This is
P<p<2pP

perhaps a cumbersome way of saying that m is the product of K prime numbers in the
interval (P, 2P], but an essential part of the calculations makes use of Dirichlet polynomials.
Note that PX ~ 2. We will also make heavy use of the Buchstab identity.

Let V be a subregion of [0, 1]*. Then we have the following results of Heath-Brown (see,

for example, [H4]):

Theorem 1 We can give an asymptotic formula for

Z S (-Apl---pka q)

(105171 105pk)cv

logz """ logx

if for every point (y,...,qx) € V we have >, «; € [% -0, %] for some subset M of
iEM

1,2, .., k}.

Theorem 2 We can give an asymptotic formula for

Z S (-Am---pk’ me)

(logpl IOgI’k)CV

logz "7 logw

if for every point (o, ...,ax) € V we have Y a; < % and > a; < i for some subset M of
ieM i¢M

1,2,....k}.

13



1-6

What we need is a lower bound for S(A,z72 ), and the Buchstab identity gives

)_ Z S(Ap’p)

1l 4 1-6
2 " <p<z 2

where the sum on the RHS can be estimated by Theorem 1. Consider what is left:

S(A23 %) =8(A2")~ Y S(A,p)

1
xf §p<w§76

(the first term on the RHS is OK by Theorem 2 but not the second)

3) =S(A "= D SA)+ D S(Appp2)

1 1
xf §p<w770 29<po<pi<z? o

The second term is now OK by Theorem 2. The third term must be further examined.

The first thing one should note here is that > S(Ap,p,, P2) is zero.
20 <ps<pri<z??, p1p3>al—?
More generally, when dealing with > S (Ap,...ps Pr), We may assume that aq +
(oo, k) cy
ogx ' logx ) —

vee T O +26¥k S 1-—0.
At this stage we could stop, and say that

S(A,z27%) > S(A,2")— D S(A,a’)+ > S(Apypa D2)

1_ 1_ 1., 1
20 <p<z2 ™0 2 <pa<p1<z 9,p1pz€[m2 9,m2]

where all terms on the RHS can be estimated asymptotically. However, very often it pays
off to ezpand (i.e., apply Buchstab’s identity) rather than discard terms. In the case  ~ 0

it is known that, essentially, all terms of the form

Z S(Apl---l)zwp%)

P1--Pak— 103, >x1 0

should be discarded (when only using the Buchstab identity). See [I1] for details. But for
larger values of 6, the possibility that Theorem 1 applies to the new terms makes expanding

14



profitable in a larger range. In particular, Monte Carlo methods suggest that for = % this
always pays off, as long as it is possible (see below), except possibly in some regions that are
so small that the difference in whether we do it one way or the other hardly matters. (This
is the conclusion of some testing I did on a computer.)

Generally, one still has to be careful when deciding whether or not to expand. Consider

the expansion of > S (Ap,..p.» Pr), assuming that Theorem 1 does not apply to
(hem,. Bk )cy
ogx ' logx ) =

any subregion of V. We assume that £ is even, so that the sign is positive. For each term in

the sum we have

S (Apl...pk;pk) = S (Apl...pkaxe) - Z S (Apl...pk+17pk+l)

20 <ppt1<pi

=5 (Ap1...pka 379) — Z S (Apl---pk+1’ xe) + Z S (Apl___pk+2,pk+2) .

29 <pri1<pi 29 <pr42<pr41<Pk

It is essential that the first two terms on the RHS can be estimated asymptotically. This is
because the first one is bigger than the LHS, and the second term is negative. Therefore,
we must make sure that for every point (aq,...,ax) in V and every ag 1 € {0} U [0, oy,
with a1 + ... + ag + 2ax,1 < 1 — 6, there is a subset M of {1,2,...,k + 1} such that either

> o € [% — 0, %], or Y o; < % and > o; < i. It would not make any difference if we

ieM ieM i¢M
took the trouble to check if Theorem 1 applies to any of the terms S (Apl___pk e pk+1) after

the first iteration, as it would necessarily apply to any term in its expansion.

When this procedure is repeated, one eventually ends up with an inequality

SALT)>Y 1) ot

where each sum ) ; can be estimated asymptotically by Theorems 1 and 2. The RHS is

15



equal to
SATT) =Y -3

where the ) !-s are sums over the regions that we have discarded. Typically, these ”bad”
regions consist mostly of disjoint convex regions that are relatively easy to describe (at least
in 4 dimensions; see Chapter 4). We shall use this observation to ease the calculations in the
following way.

Let y = 227, so that we have Z(z) = (2,2 + y]. Each sum 3_; over a ”good” region
is asymptotically 2> 7 where ) is a sum over the same region, but in which A has been
replaced by B. B is defined like A, with Z(z) replaced by (z,2z]. (I will soon return to why

this is true.) If we define each > by Y ! in a corresponding way, we get

S(A, 25 > 2 (S(B,x%) B A )

X

and the RHS can be estimated asymptotically with the Prime Number Theorem (and some
numerical integration).
In order to treat the last term > S(Apipys P2) in (3), we divide the correspond-
m9§p2<p1<m%79
ing region V into six subregions according to how one proceeds. First, note that in this case

we have

1
V:{(011,012)|9SO!2S041S§—9,O!1+2012§1—9}

by previous remarks. We now write V' as a disjoint union of six sets, save that they may in

pairs have common boundaries. Thus V = AU BUCU DU FE U F where

1 1
A= {(041,042”0414‘0422 5,041—042 <0,09 < Z}

16



1
B:{(al,aQ)\al—i-agZ §,a1<——0 042

—_

|

1
D:{(0[1,042)|9<OZ2<O!1,§—9<O£1+O!2<§}

)
oolr—'

C= {(011,062)|(9<012<C¥1,Ck1+a2<——0}

§a2§a1,a1+2a2§1—0}

A~ =

E = {(al,ag) |

IA
) =

1 1 1
F= (al,OéQ)‘gSOQ a1+a22§,a2+0§a1§§—0

In the interior of AU B U C, Theorem 1 doesn’t apply to > S(A,,,,,p2), but in this region

we can always expand this to

Z S(Apipz %) Z S(Apipaps %)+ Z S (Apipapaps> Pa)

29 <p3<ps 29 <ps<p3<p2

The first two terms can be estimated because: In A, we have

1—9—0&1—042

(%]

- 2
1—-0+a —« 1
= o +az < LA g
2 2
andazgi. Ianehavea1S%anda2+a3§2a2§i, andinCwehavea1+a2§%

and a3z < ag < i. Obviously Theorem 1 does apply in D, as was pointed out before, so we
do not have to do anything more with that. In contrast, the whole of £ must be discarded,
because a; > ap > 1.

It is in F' that we will apply the so-called role reversal trick. First, note that for every
point (aq,as) in F there is an a3 such that neither Theorem applies: If oy 4+ 3a < 1 -6,

then we may choose a3 = as. Then a; + a3 > % and

ay+az =200 = (a1 +3a) — (a1 +a) < (1—-0)—~=-—10
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which shows that Theorem 1 does not apply. We also have as + a3 = 2as > i which shows

that Theorem 2 doesn’t apply either. If a; + 3y > 1 — 6 then choose a3 = 1’0’%; this

gives the same conclusions as we have

1—9+O!1—O!2 1

= > —

a1+a3 B <9
1—9—0[14-0&2 1
012—}—013 9 =39

1-6-— 1-46 3 -2
g = 2a1+oz2 _ + (o + 0242) (a1 + o)
3
. 1—0+(1—Z)—2(Z—0) _1

This means that we cannot expand in the usual way, because we would encounter terms

- Z S (Ap1p2p3a m9)

which cannot be estimated. But we have that

1-6
- ZS (Apipops, P3) = — Z S (Apzpata CU_)

2p3t
plt=p>ps3 pap

- Z S (‘AP2P3t’ xa) + Z S (Ap2p3tp4ap4)

plt=p>p3 plt=>p>p3

where Theorem 2 applies to the first term on the RHS. Indeed, letting

_ logt
~ logzx

:1—0—(11—(12—013

givesaz+=1—0—a; —ay < % — 0 and ay < i. For the last term, one estimates the
part where Theorem 1 applies and discards the rest. With the large range for p, (which is
[xo, \/p_l}), one expects that it is better to expand as normally if the value of p3 allows it.
However, in some parts of F', it is still better to just discard the 2-factor term. It seems

18



like the best procedure is to let a computer check lots of small subregions and determine
which choice is better in each one. The problem is that it appears to be very complicated

to classify the regions in which there is no sum of a subset of
{012,0[3, 1-— 0 — 1 — Qo — 013,0[4}

lying in [1 — 6, 1]. On letting a computer include a whole "box” in the integration if there
is only one point inside having this property, one does get a valid upper bound for the
contribution, but one loses accuracy. There are a few other regions where we use this
procedure because of the great difficulties this avoids. In particular, our treatment of the
”bad” regions in 6 or more dimensions will be fairly brief, because the numerical contribution
is small. T will return to this matter in Chapters 4 and 5.

Before turning to Chapter 4, the classification of the 4-dimensional discarded terms, I

will show how Theorem 1 and 2 are proven. Let

1€T) = —— / & s

e

I(§,+00) = lim I(6,T)=1{ 1 ¢=1

L,EeE>1
\
This leads to Perron’s formula:
1 c+i00 s
x
"oy = — A(s)—d
Z fin 2m1 / (5) s N
n<z c—100
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o0
where A(s) =) % is absolutely convergent for Res = ¢. ' means that if z is an integer,
n=1

then % comes instead of a, into the sum. Moreover, we have the estimate

Co s 1’; £ 1
\I(€,T) — I(&,+00)| < ¢ mm( T|10g§|) if & #

% ifé=1
Let y = 23+ (as above). Then > S (Ap,..pe»q) can be written as
(logm logpk)cv
logz """ logz ) =
c+i00 K ( )
1 1 1 1 1 T+ y s _ 8
v | (SR (2, 5) (26
c—ioo ! k P<p<2P TIn=r>q

where the summations are still over the range

logpl’m’l()gpk cv
log x logz ) —

There are various ways in which one can estimate this. Harman uses Van der Corput-
estimates; Heath-Brown has a more elementary approach. In either case, one gets an estimate

which has a main term equal to

y
D SR (< SY)
(lfogg”; lloi;gk)gv

as already mentioned, and an error term

1 c+iT 1 1 1 K-1 1
wi (- (2 5) (X i]e
c—i P<p<2P rln=r>q

t, error term
main term

where T = z'7-. From here one only needs to show tha — 0, as the main term can
be estimated asymptotically with the Prime Number Theorem. In particular, it is sufficient

to show that the error term is O(T log” x) for some constant J. Now, under the hypothesis
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of Theorem 1 this can be written as

L Fis)G(s)ds

27

with F and G being Dirichlet polynomials supported on integers below y/z. Thus we can

apply Holder’s inequality to obtain

1
21

1 1

3 3 -
F(s)G(s)ds < </ |F(s)[” dS) (/ 1G(s)|? ds) L T> 2 log” 2 =Tlog” x
Under the hypothesis of Theorem 2 we have ¢ = z%, which means that the integrand in
the error term can be written as F(s)G(s)Z(s) where F(s) is supported below /z, G(s) is

supported below z4, and Z(s) is sufficiently ”similar” to ((s) that we can use the fourth

power moment estimate for this function if the support is above 21 and obtain

QLM, F(s)G(s)Z(s)ds < (/\F(s)\st); (/\G(s)|4ds>i (/|Z(s)|4ds>i

< Tztitilog” z = Tlog” z

If the support for Z is below 2% then one takes G and Z together and proceeds as in the
first case. A fuller explanation is given in [H4].

Can we get more out of Holder’s inequality, i.e., add to the list of theorems one can use?
The answer is that we can’t do more that is relevant in our discussion (as our treatment
of terms with 6 or more factors is very simplified), but that it is actually possible to write
1 as the sum of reciprocals of even numbers in other ways than starting with 3 + 1 and
splitting up each term. The following result covers possible analogues of both Theorem 1
and Theorem 2.
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Proposition 3 Suppose that {n;}, ;<. is a finite sequence of positive integers such that

ny < ...<ngand Y ni = 2, and that for any proper subset S of {1,2,....,k} with at least

1<i<k
two elements, the reciprocal of Y ni 15 not an integer. Then one of these holds:
€S

e k=2andn =ny=1
e k=8andn =2, npo=n3=3,n4 =n5 =ng =ny =05, ng =30

e k>9and n, > 28

The proof is rather cumbersome, but the lighter version with the last two possibilities
replaced by "n; > 20” is not difficult to see, and T will give the proof here. Note that it is
essential that we can prove that n; > % = 12.5if ny = ny = 1 is excluded, in order that we
can conclude that Theorem 1 and Theorem 2 are in a sense best possible.

By a prime power, I will mean a positive power of a prime number (i.e., 1 is excluded).

Case 1: Suppose ¢ is a prime power and that no multiples of ¢, possibly except ¢ itself,
are in the sequence. To avoid a multiple of ¢ in the denominator of > n%;’ the number r of
occurrences of ¢ must satisfy (¢,7) > 1. But if » > 1, this would conflict the property of the
sequence, so ¢ itself can not be in the sequence either.

Case 2: Suppose ¢ is a prime power and that no multiples of g, possibly except ¢ and/or
2q, are in the sequence. If the number of occurrences of 2q is zero, then we are back in Case
1. If the number of occurrences of 2¢g is > 2, then we have 2_1q + 2—1q = %, so the condition
of the sequence is violated. So we may assume that there is exactly one occurrence of 2q.

Then, to avoid a multiple of ¢ in the denominator of ) %, there must be r occurrences of ¢
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where (2r 4+ 1,2¢q) = (2r + 1,¢) > 1. But the reciprocal of

2 q 2q 2q

(2r+1,q)—1xl 1 (2r+1,9)

would then be an integer. So neither ¢ nor 2¢ is permissible.

So suppose there is such a sequence other than {1, 1}. We are assuming that the largest
integer in the sequence is at most 19, so that Case 1 rules out 11, 13, 16, 17 and 19. Having
ruled out 16, Case 1 also rules out 8. The only remaining multiples of 4 are 4 and 12. To
avoid a multiple of 4 in the denominator of n%, we can’t have one without the other, but

+ % = 3, so we can rule them out too. Case 2 rules out 7, 9, 14 and 18. The remaining

=
W=

possible integers are: 2, 3, 5, 6, 10, 15. If there are any multiples of 5 in the sequence, then
15 must be one of them, by Case 2. But since %—i— 11—5 = é, this rules out 10. There can not be
as many as two occurrences of 15; indeed, there would then have to be another multiple of 5
in the sequence to avoid a multiple of 5 in the denominator of ) n%" and 13—5 = %, é + % = I
We conclude that if there are any multiples of 5 in the sequence, then there are exactly three
occurrences of 5 and one of 15, as % + % = % (the only way to avoid a multiple of 5 in
the denominator). This means that 3 and multiples of 5 are mutually exclusive possibilities,
and no matter which one occurs (if any), the contribution to ) n% is at most % The other

possible integers in the sequence, 2 and 6, can not come in pairs, so » ni < % + % + é < 2,

a contradiction. This concludes the proof of the weaker version of Proposition 3. O
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4 Classification of the 4-dimensional regions
Recall that in the regions

1 1
A= {(a1,a2) | ag +ag > 5,041—042 <0,09 < Z}

<)

1
B = {(Oq,CYQ) a1 +ap > @S < 5~

—_
OOI»—A

C= {(C\(l,ag)|0<O{2<CM1,&1+012<——0}

we may apply Buchstab’s identity twice, for p; = £®, to obtain

S (Ap1p2ap2) =S ( p1p2> L E : S p1p2p3’p3)
x% <p3<p2
:S( p1p2s L E : S p1pap3> L ) E , S(Aplmpspupzl)
29 <p3<p> 29 <pg<p3<pz

where the first term on the RHS can be estimated by Theorem 2, and the second can be
estimated by Theorem 2 (but not entirely by Theorem 1). Here we shall give the subregions
of

{(al,a25a3aa4) | (alaaQ) S AU B U C: 0 S (671 S (0% S 042}

for which the corresponding part of the last term has to be discarded. Admittedly, the role
reversal trick is not considered here because of the difficulties involved. In particular, one
would not expect an improvement on using the same simple procedure for trying this out
as we do in region F' here, because of the lost accuracy in the boundaries of the regions.
Indeed, the higher the number of dimensions is, the greater the loss of accuracy is because

of the limitations of the acceptable computer running time.
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For the corresponding 6-dimensional regions, the contribution is sufficiently small that it
is sensible to give an upper bound in essentially the same way as for region F'.

From now on, each region X in the (a1, ay) —plane is replaced by
{(OZl,OfQ,Of3,0f4) | (041,052) € X7 0 S Oy S (0%] S 0{2}

Although we are not interested in the parts where either oy + g +2a3 > 1 —60 or a1 + s +
as + 2a4 > 1 — 6, we shall check in each case whether this calls for extra conditions, so that
the calculations in the end can be as simple as possible.

Consider the expansion

Z S(Ap1p2p3p4; p4) = Z S(Aplp2p3p4: 3:0)_ Z S(Ap1p2p3p4p5, xo)

2% <ps5<p4

+ Z S(Apl---pa’pﬁ)

20 <ps<ps<p4

Our task is to determine, as far as it is feasible, best possible bounds for the subregions
in which the first two terms on the RHS can not be estimated because Theorem 1 and 2
do not apply in the interiors. (I will only list new conditions in each region.) Thus, the
corresponding terms in the complementary regions can be estimated. In the difficult cases
we encounter, where we do not take the trouble to find the best possible conditions, it is of
course essential that we can still estimate everything in the complements asymptotically.

Region A: We have seen that a; + ag < %, and we must have o + a3 < % — 6 to avoid
Theorem 1. This implies that c; + as + 203 <2 (3 —6) <1 —9.

If ap 4+ a3 + au > 3, then we can not even estimate > S (Ap,popyps> 2°): If Theorem 1
were applicable, then there would be a sum of a subset of {a1, ay, a3, oy} in [% -0, %} But
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if that subset had only one element, the sum would be at most a; < i + 6. If it had two
elements, the sum would either be a; + ayp > %, or at most a7 +az < % — 6. If it had at least
three elements, the sum would be at least as + a3z + ay > % If Theorem 2 were applicable,
we could for example determine the subset with the largest sum < %, and the sum of the
complement would be < i. But here, the subset with the largest sum < % is clearly {aq, a3},

and the sum of the complement is
1 1 1 1
ap+ oy = (g + a3+ o) —az > 5~ <——9—041> =a;+0> Z+9>Z
We must also impose the condition

o +ar+az3+200<1-0

in this case.

Suppose that as + ag + ay < % To avoid Theorem 1, we must impose
1
oy + a3+ ay < 5—9

This implies

DN | =

1
041+043+Oé4§ 5—(94‘(0&1—042) S
so we must further impose a1 + ag + ay < % — 0. This implies that
1
a1+ a4+ az + 3oy < 2(0!1+(13+Oj4) <2 (5—0> <1-—-86

so a5 may be as large as a4. To avoid Theorem 2 for this value of a5, we must have

o1 + a3+ 204 = 1 + a3 + a4 + a5 > 5. But this implies that

—0

|

1
a2+0z3+2a42§—(a1—a2)2
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so to avoid Theorem 1, we must impose g + ag + 204 = g + a3 + a4 + a5 > % Under this
restriction, there is clearly no way of having the sum of one subset less than % and the sum

of the complement less than i, as

a1+a2+oz3+a4+a5=a1+(a2—|—a3+2a4)2 +

e~ =
N | —

The nonexistence of subsets with sums in |5 — 6, 7] is equally easy to establish on considering

sums of 2, 3 and 4 terms separately. For smaller values of a;, we would still have to require
o9+ asz + 204 > %

We thus have the two regions

1 1
Al1051+(13§§—9,042+013+044Z§,al+&2+a3+2a4§1—9

[y

1
A2ZC¥1+043+044§5—9,C¥2+043+20é42§

Actually, it is equally easy to determine the corresponding regions in 6 dimensions, 8 di-
mensions, etc. for (aq,a9) € A. Here, I will only mention this as a ”curiosity” without
the derivation, because we shall rely on a computer search for ”bad” regions in 6 or more
dimensions, and the numerical contribution from those coming from expansions of A is very

small. Thus for 2k dimensions, k£ > 3, one gets

( )
a1+a3+a4+...+a2k,1§%—0

3 012+Oé3+...+012i_1+2052i S % fori:2,3,...,k—1 4

012+043+...+042k2%
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and

a1+a3+a4+...+a2k§%—0

§ Qo+ Q3+ .. 4 i1 + 209 < % fori=2,3,...k—1 ¢

a2+ a3+ ...+ Qoo + 200 > 1
\ 7

Region B: Here we have a1 + s + 33 < a3 +4ay <1 —6,s0 that § < ay < az < a
implies max (o + g + 203, 1 + g + ag + 2a4) < 1 —0. There are three convex subregions
17.
—-0,3]:

in which neither of a; + a3 and oy + a4 lies in [%

If oy + a3 < 5 — 0, then

1 1
a1+a2+a3+3a4§(a1+a4)+4a2§ (5—0)+§:1—0

so that as may be as large as ay. To avoid Theorem 2, we must then have s + 20y > i.

This implies
a1 + 204 = (0 + ag) — 209 + (g + 204) >
whereas
1 1
a9 + a3+ 204 §4012+3((O!1+0[3)— (0[1+O!2)) < 4oy — 30 < 5—39< 5—9

It is easy to check that neither Theorem applies under these conditions, which would also
be required for smaller values of ais. That settles this case.
If oy + a3 > %, a1 + oy < %—chen we still have a; + as + a3 + 304 < 1 — 6. Since

a5 once again may be as large as oy, the analysis is very similar to the previous case. Two

necessary requirements are a; + 2ay > 3, s + a3 + a4 > 7. This is also sufficient, because

1 1
a2+a3+2a4§4a2+2((a1+a4)—(a1+a2))§4a2—20§§—20<§—0
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Finally, consider the case oy +ay > % Clearly we must have as+ a3 +2ay > i (otherwise
Theorem 2 will apply for any «s), and we shall see that it is sufficient. Suppose firstly that
Qg+ a3z + oy > i. Since

3 1
C¥2+043+OZ4§3O£2S§<§—(9

not even Y S (Appspeper @°) can be estimated. Suppose secondly that ao + a3 + oy < 7.
Then

5 1 5
a1+a2+a3+3a4§a1+§(o¢2+a3+a4)S5—0+E<1—0

which means that we can take a5 = a4, in which case neither Theorem applies.

We thus have these regions:
1 1
Bi:og+a3 < 5—9,0424-20&42 1

1 1 1 1
B230¢1+OZ4S5—9,0414'04325,0414-204425,0424-043-%0&422

1 1
Bg:a1+a42§,a2+a3+2a422

Region C': This is the difficult case. First, we remove some obvious subregions in which
Theorem 1 applies to the sum of three or four coordinates. It never applies to the sum of
two of them. The remaining region consists of some convex disjoint subregions which we

treat separately. We have:
1
CO:a1+a2+a3+a4§ 5—0

1 1
013041+042+043§5—9,041+O£2+043+044Z5

1 1
C2:a1+a2+a4§5—0,a1+a2+a32§
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1
C3:C¥1+O&3+OZ4S5—0,&14-0524‘&42

N — N =

1
Ca:ap+az+ay < 5—0,a1+a3+a42
1
Ch:ag+ a3+ a4 > 3
Of course, in the whole of C we have

o1 + Qo

IN
oD

and

O[1+012+20[3§2(011+O[2)<1—9

and in C' \ C5 we also have
o+ og + g+ 204 < (0 +ag) + (g +a3+oy) <10,

in C'5 this is an extra condition.
Trivially, C0 doesn’t give any terms to which Theorem 2 cannot be applied twice, but

we include it for completeness. In C'1 we can always take as = a4 since
o +agtaz+3as<2(ag+az+ay)<1l-—06;

this also holds in C2 and C3. To avoid Theorem 2 (with a; + as + a3 < %, oy + asy < i) we
must at least have oy > %, and it is easy to see that for as = ay, this also avoids Theorem
1: The sum of any three terms is at most % — 6, and the sum of any four terms is at least %

In C2 we must at least have g+ > § to avoid oy +as + s < 5 — 0, as+ a5 < § for

a5 = ay. If the sum of a subset is at most ; then the subset is either {au, as} or a singleton
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set; in either case the sum of the complement is at least % It is easy to see that Theorem 1
doesn’t apply either, if as = 4. The reason is the same as in C'1, except that the sum of
any three terms is either oy + o + ag > % or at most a; + as + oy < % — 0.
Let us also finish C5 before turning to the more difficult regions C'3 and C'4. In C5 we
have
1 1

1
> > -4 > =
Oz3+a4_2 a2_4+2

>
W

so we can not even estimate Y. S (Ap,popsps, 7). All we have to do here is to impose a; +
a2—|—a3+2a4§ 1-—6.

So the regions we have found so far are:

Cly i ay >

o~

1
02120434-@421

C51!(X1+&2+C¥3+2C¥4§1—0

Region C'3: We have already seen that as can be as large as oy, and to avoid Theorem 2
with oy + a3 + oy < 5 — 0, as + a5 < } for some a5, we must at least impose as + g > 7.
If the stronger condition oy + a3 + 204 > % is satisfied, then we also have

+ 20y = (g + a3 + 20y) >1 L >1
O3 G0y = (O +— O3 Oy a2_2 1 9 1

Suppose a5 = ay. The largest sum of a subset < i is either aq, as, as 4+ a4 or 2a4. But in

each case, the sum of the complement is > %, so Theorem 2 doesn’t apply. A subset whose

1 1

sum lies in [5 -0, 5] would have to have exactly 3 elements (by the extra requirement),

which is impossible by the definition of C'3, so Theorem 1 doesn’t apply either.
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Suppose s + a3 + 2a4 < 5. Then we must have oy > } and as + 204 > 1 to avoid

Theorem 2. If oy + a3 + 204 < % — #, then we may choose as = a4y, and the argument is

1

similar to that in the previous case. Otherwise, we may choose az = 3

0-0!2-0!3-&4

to avoid Theorem 1 for sums not involving ;. Note that we then still have

1 1 1
C¥5:(5—0—063—014)—0622051—052:2(X1—(O[1+052)Z§—(5-0):0

The only way that Theorem 2 can apply is if as + a5 < i or az + a4 + as < i.

A third
candidate for a maximal sum below % would be a3 + a4, but Theorem 2 would then require

o1+ ay + as < %, which would imply

1
042+045§§—041§Z
However,
1 1 1 1
a2+a5:§—9—(a3+a4)2§—0—<§—0—a1>=a121
and

1 1
CM3+O!4+(I5:5—0—012:5—9"‘&1—(0114‘&2) 20412
Theorem 1 doesn’t apply either, since
a1+a3+a4+a5:a1+(a3+a4+a5) Z
This gives the two regions

1

C3l:a2+a3+2a42 5
1 1 1 1
C3:a1> a0 +ay > 03+ 204 > —, 00+ a3+ 20y < 3

4 4 — 4
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In C4 we shall consider three different cases separately. The critical question is which

ones of vy and a3 + a4 are at least %. Of course, at least one is, as their sum is > % That

, a3 + g > i), the mediocre case (a; < i) and the hard case

HS =

gives us the easy case (o >
(a3 +ay < i)

The ”easy” case is very similar to C'5: We can not even estimate ) S (Ap1p2p3p4, 3:‘9), SO
the whole region has to be discarded.

In the "mediocre” case (o < ;) we are going to do things a little differently. There are
several inequalities which have to be satisfied in order that we don’t have to discard, so in the
calculations we will first integrate over the whole region and then remove the contribution
from the non-discarded subregion. Note that the only way that Theorem 2 can apply is for
oy + a3+ oy < % —0, a1 < i. Our task is therefore to decide, for any point {ay, ao, ag, oy}

here, whether there exists

1— 60—y —as—as —
o5 € |:0, min (Oj4, i a2 as Oé4):|

2

such that

1
O!2+O!3+O./4+Ol52§, O!1+O!5ZZ

— #) and no sum of a subset lies in [1 — 6, 1].

(this implies a5 > 6, since as + a3 + s < 3

A sum in [% -0, %] must have the summands «; (since the two largest sums without it are

oo t+asz+ay < %—0 and oo +as+ay+os > %), as (since Theorem 1 doesn’t apply without it)
and one other element (since a;+a5 < aj+ay < %—0 and a1 +az+ag+as > a+aztay > 1),

2

so the only possibilities are

011+O£2+Ck5, a1+a3+a5, 011+Ck4+015
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Suppose oo — a3 > 0. Then we can take

1
04525—0—@1—@3

since this gives
a5 < ——(O!1+Q3) SOJ4
and

o tast+agt+as+2a5=1—-20—a1+tas—az+a, <1—-20<1-46

As for the requirements made to avoid Theorem 2, we have

1 1 1
a2+a3+a4+a5=5—0—a1+a2+a42§—a1+a3+a42§
and
PR PR, MRS
BTwB=y BT R=YT Ty

and the Theorem 1-related requirements are trivially satisfied: a; + az + a5 = % — 0 and

1
O!1+C¥2+Oé5=§—0+(042_a3)2

DN | =

Suppose, independently of "y — a3 > 07, that a3 — ay > 6. Then we can choose

1
Q5 = 5 — 01— Q3
2

since this implies a5 < a4 (trivially) and
a1+a2+a3+a4+2a5=1—a1+a2—a3+a4S 1—9—Q1+O!2 < 1-46

Then we have

1 1
a2+a3+a4+a5:§—a1+a2+a42§
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and

1 60 1
a1+a5=——a321+§>1
which avoids Theorem 2, and we have
(X1+C¥3+Ck5=§
and
a1+a4+a5:§—(a3—a4)§§—0

which avoids Theorem 1. So, either of ay — a3 > 0 and a3 — ay > 6 implies that we are
dealing with a term which is to be discarded. Let us assume that g —a3 < 0 and ag—ay < 0

in the remaining analysis. The Theorem 1-requirements then reduce to:

1 1
a1+a2+a5§§—00Ra1+a4+a52§

The first one of these gives the inequality system
1
o +ag+ o+ o5 > 5

a1+a521

1
a1+a2+a5§§—9

(as the last inequality implies s < a (trivially) and ; + o 4+ a3 +au + 205 < 2 (3 — 0) <

1 — ). On rewriting this as

1
04525—062—043—044
>1
as > — —
527 1
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C¥5S§—9—041—C¥2

we see that the eristence of an a5 which satisfies this is equivalent to the inequality system

1 1
5—0—@1—0522§—CV2—043—OZ4¢>051+9§CV3+C¥4

1 1 1
5-0-@1-@221—041(:}@2§Z—9

of which the last inequality is always satisfied:

1 1 1 1
042=a1+(042+043+044)—(041+Oé3+a4)SZ‘F(5—9>—521—0

This leaves o + 0 < a3 + a4 in this case.

1

Having settled that, we consider the alternative case oy + oy + a5 > 3,

which gives the
inequality system

a5 < ay
art+astagt+os+205<1-—16

1
a1+a4+a52§

(the last inequality implies ag + a3 + g + a5 > % and oy + a5 > i) In the same way as

above, the existence of an a5 is equivalent to the system

1

o) + 204 > -

2

1 1—-0—0a;—ay—a3—a
——oy—ay < ! 2 3 4@041-1-0442042-1—043—&-9

2 2

But if i + 2a > 3 is satisfied, then we have

1 1
a1+a42§—a4=(5—9—a4>+02(a2+a3)+0
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so we only need to impose aq + 2ay > % in this case.

The region we have to discard is therefore the complement of the region

. 1
C4(mediocre)r-compremenT : 2 — 03 < 0,3 —au < 8,01 + 60 > g+ o, a1 + 20 <

\)

In the "hard” case (a3 + oy < i), at least the analysis is somewhat simplified by the
inequality

1 1
a1+a2+a3+3a4§(a1+a2)+2(a3+a4)§§—0+§=1—9

which means that the maximum value of a5 is always ay. This means that we must always
have

1
Oé3+204421

in order to have a chance to avoid Theorem 2. We will assume this from now on.

If there is a subset M of {1,2,3,4,5} such that either

or

then we may assume that M is one of the following:
{1,2}
{1,2,5}
{1,3,5}
{1,4,5}
{2,3,4,5}
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Since a; 4+ as < § — 0, the possibilities {1}, {1,3} and {1,4} are superfluous.
Once again, we shall consider a few special cases separately according to difficulty. These

are:

1
III:CKQ-FOQLEZ

Note that in I and /7, we have

a2+a3+a4+a5§2(a2+a4)§

DN | =

In Region I, the list of possible choices for M can be reduced to

1
{1,2} — impose a3 + a4 + a5 > 1

1
{1,4,5} — impose a; + a4 + a5 > g

. 1
{2,3,4,5} — impose as + a3 + oy + a5 < 3 — 6
This gives the inequality system

0 <

I —ag—ag < (0

1

73— — oy <

/

which gives six inequalities for the first 4 coordinates. Two of them are the trivial

1
ay >0, 043+204421

38



and we also have

1 1
a2§§—9—a1§1—9

and

N~

<

[N

2
042+Oé3+044ﬁg(a2+043)§

which leaves us with the two extra inequalities
1
o1+ 204 > 3’ a1 > ay+ag+0

in Region 1.

Region I1: The list of possible choices for M can be reduced to

1
{1,2} — impose a3 + a4 + a5 > 1

1
{1,3,5} — impose a; + a3 + a5 > 5
. 1 1
{1,4,5} — impose a; + a4 + a5 > g OR a1 +ay + a5 < 5—0
. 1
{2,3,4,5} — impose ag + a3 + a4 + a5 < 5—0

So we have two possible constraints for a; + ay + as.
The first possibility can be treated almost exactly like Region I which we just settled;

the only difference is that it is not completely trivial that
1
ar+ a3+ ay < 5—29
However, one of the extra conditions we ended up with, namely a; > s + a3 + 6, implies

1
a2+a3+a4§a1—0+a4§a1+a2—0§5—20
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So the extra inequalities we end up with are once again
1
oy + 20y > 3 > oy +az+0

The other possibility yields

0 < <Oj4

—ag—ay < () <l -O-mm—az—au
1 2

t—a;—a3< <

2 J \

1_

5 0—0!1—014

which gives 9 inequalities for the first four coordinates. However, all those based on a5 < ay

are trivial. The others are:

1
O£2+043+Ot4§§—20
1 . . .
ay < 1 — 0 (trivial, see Region I)
a1 > ag+ oy +0
1
a1+a4§§—20
1 1 1
a1§a3+1—0(followsfroma1+a2§5—9§a2+a3+1—0)
a3 — oy >0
The inequality ag — ay > 6 implies
1
O£1+014§Ot1+043—(9S§—20

and we also have that a; > a9 + a4 + 0 implies

1
a2+a3+a4§a1—0+a3§0z1+a2—0§5—20
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That leaves us with the extra conditions
a1 >y t+oas+ 0, 03 —ag >0

in this case. However, the regions defined by the two sets of conditions we have sifted out

in Region I] need not be distinct. The complete requirement for Region I is therefore

o + 20 > o > s +ag+0

1

2
&1ZOA2+OJ3+9 013—01429

Region 11 is the most difficult case, because not only are there three different ways to

avoid Theorem 1 for sums involving a;, we must also combine these with the two possibilities
1
(a) ag + a3+ ag + as < 5—9

and

1
(b) a’2+0¢3+044+0152§

With ay 4+ a4 being rather big, the requirements for avoiding Theorem 2 are reduced to:

1 1
CE1+O!2+O!5Z§,C¥3+CE4+O!5ZZ

and the three ways to avoid Theorem 1 for sums involving «; are:

—_

(c) 041—1-044-1-04525

1 1
(d) 061+Ck4+015§§—0, 061+Oé3+6k525

1
(e) a1+a3+a5§§—0
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We will consider the cases involving requirement (a) first, since this resembles the situation in

Region II. Indeed, the combinations (a)+(c) and (a)+(d) give exactly the same inequalities

as in Region /1, and the new element

042+C¥4ZZ

doesn’t make any difference in the calculations. That leaves us with the combination (a)+(e).

Here we have

0 <
I s —ay <
1 3 4 >
T —a;—ay <

2 J

<O{4

>Of5< S%—O—ag—ag—cm

<5—0—o—as
\

Out of the nine inequalities we get from this, the ones coming from a5 < a4 are once again

trivial. The other six are

1
a2+a3+a4§§—29

(6%

1
< i 6 (trivial)

0512043+C¥4+9

(07

1
1+Q’3S§—20

1

1 1
a1§a4+1—0(followsfromal—i—an5—0§a2+a4+__9)

In the same way as in the second case

4

012—01329

of Region I, we do the reductions

1
a12a3+a4+0:>a2+a3+a4§a1+a2—0§5—20
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and

1
ag—a320:>a1+a3§a1+a2—9§5—20
So, for the case where (a) is assumed, we get the region

o + 204 > 5 oL > ay+oy+0 o > az+ay+0

or or

0112052+043+9 013—01429 042—01329

Condition (b) is actually a simple one, because it trivially implies both our Theorem 2-
avoiding requirements. It also trivially implies that a; > 6, so all we need to do is to
combine

1

§—a2—a3—a4§a5§a4

with each of (c), (d) and (e). Combination with (c) gives the inequalities

1
042+Oé3+20442§

—_

a1+2a42§

which can’t be reduced. Combination with (d) gives

1
a2+a3+2a42§

1 ..
a; + a3z + ayg > = (trivial)

V]

a1 +0 < as+ as
a3 — oy >0
which can’t be further reduced (after throwing out the trivial one). Finally, combination
with (e) gives

1
a2+a3+2a42§
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a1 +0<ayg+ou

Here, however, we can do the reduction

1
011+9SO!2+O£4:>O!2+G£3+20142&1+O!3+O!4+9>5

and the complete set of requirements for region I11] is thus

a1+2a42% a12a2—|—a4+0 04120!3+O!4+0
or or
or > oo +az+ 0 a3 — oy >0 oy —ag >0
( )
012—{—0!3—{—20!42%

(12"}‘0!3'{’2&42%
or or { g +0<ays+as ¢ O {a1+0<as+as}

041+2044Z%

C¥3—01420
\ /

The complicated shape of the set of requirements in Region C'4(hard) (with lots of AND’s
and OR’s) makes it pretty hard to work out a representation suitable for numerical integra-
tion with high accuracy, although it would probably be possible to write a computer program
that could do this. Instead, we shall find an upper bound for the contribution in the following

way:

e Integrate over a convex region which covers C4(hard) - we will use:
(al,...,a4) \ 0<ayu<..<ap,a;+a < % -0,

a1+a3+a42%,a3+a4§i§a3+2a4

Note that the condition on oy + a3 + a4 in C'4 was dropped, since the other constraints

yield
1 2 1 1
a2+a3+oz4:(a1+a2)+2(a3+a4)—(a1+a3+a4)S 5—0 +Z_§:§_0
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e With a computer search, remove (a lower bound for) the contribution from ”boxes” of
the form

a; € [d, ol + Aa] fori=1,2,3,4

which are entirely inside the covering region, and entirely outside C'4(hard).

The wisdom of using this relatively simple procedure is confirmed by the fact that the
contribution from C4(hard) is actually pretty small; see Chapter 5.

In C4(mediocre) the procedure is similar:

e Integrate over

1 1
{(011,---,044)|9§044§ e <a, o t+agtag < 5—9,0414-0434-0442 e < Z}

—_

Note that

2 1 1 1
041+062:2051—(061+O£3+Ot4)+(012+053+044)SZ—§+ ——f0)==-0
e Remove the contribution from ”boxes” entirely inside C4(mediocre);.comprLEMENT

The contribution from C4(mediocre) is even smaller than that from C4(hard).
We also need to do an analysis of region F. If oy is sufficiently small, then we can find

4-dimensional regions pretty much as we just did for A, B and C. The requirement is that

1
4

1

either ap + a3 < 7 or ag + a3z < % holds; we therefore consider a; —ap > ; and a; —ap < i

separately.

Suppose firstly that oy — a > 7, so that aw + a3 < ; is required. Then we have

ap+ay+3a3<og+2(ataz)<-—-0+-=1-10

DN | =
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oo |w

so ay may be as large as as. Note that as + a3 + oy < 3 (an + a3) < 2 < 3 — 6, so that the

situation is exactly like in B, and we get three regions again:

Fi:o —« —, Q9 + -0+« - — a9 + 2 -
1 1 2_1a2 3_1a 1 3_2 s (42 4_l

1 1 1 1 1
FQZOZ2+OJ3SZ,OZ1+OJ4S5—0,@14‘&325,@14‘20{425,@2+C¥3+0&42—

W

1 1 1
F3:a2+oz3§Z,a1+a425,a2+a3+2a421

The condition oy — g > i was dropped in F, and F3, since we have

1

N | —
A~ =

a; —ag = (o1 +a3) — (e + az) >

in those regions.
Suppose secondly that a; — ay < i, so that a; + a3z < % is required. To avoid Theorem
1 we must have a; + a3 < 5 — 6, which implies that a3 < a, and that
a1 + ag + 203 <2(C¥1+C¥3) <1-86
Also,
1 1 1 1 1/1 1 360
<-——f0-a;==-—-0—-= — <-——0—=|=4+0)=-——
053_2 aq 9 2((0&1+O¢2)+(O&1 052))_2 2<2+ > 4 9

It should be noted that in the cases where as + a3 is required to be > i, the condition

(or even < i — 6, which occurs in one case) is superfluous, since we then have

PN

o) — oy <

1 1 1 1
a; —as < (a1 + a3) — (@ + a3) < (5—9>—Z:Z—9<Z

If oy 4+ a3 + a4 > 3, then we have indeed

pa sl 30
e
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so we can not even estimate > .S (Ap, ppsps> #°). We must, however, impose

a1+a2+a3+2a4§1—0

here, and we get

1
F42011+O!3§5—9,012—}—0!34“0!425,@1+C¥2+OJ3+26¥4S1—9

For the remaining regions we have oy 4+ a3 + ay < % — 6 (the interval [% -0, %} was

avoided as usual) so that

1
a1+a2+a3+2a4§(a1+a3)+(a2+a3+a4)§2(§—0) <1-6

o +az3+ay < %, oy + ay < i then Theorem 2 applies. We therefore have three cases left

to consider:

. 1
(7) a1+a3+a42§, oo+ ay

v

R N

.. 1
(ZZ) a1+a3+a4§§,a2+a42

1
(173) on + a3 + g > 3’ oo +ay <
where a; — iy < i, a1+ ag < % —0, 00+ a3 +ay < % — 6 is assumed is each case.

The case (i) is easy: We still can not even estimate Y S (Ap, popsps, 7). This gives us

1 1 1
F5:O,/1+043 S 5—9,0’24-044 Z Z,a1+a3+a42 5,0&2+Of3+044§ ——9
In case (i1), we require oy + a3 + g < % — 0 to avoid Theorem 1. Then we have

a1+0z2~|—0z3+3a4§2(0z1+a3+a4)<1—9
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so that oz may be as large as a4. This gives at least the extra condition ay + a3 + 2a4 > %

to avoid Theorem 2. We need an «s for which

1
a1+a3+a4+a52§

1
042+C¥5ZZ

1

1
vt aztastasé [5—9,5]

If ap 4+ a3 + 204 < 1 — 0, then a5 = oy will do. Otherwise, choose

1
a5:§—9—a2—a3—a4<a4

We then have

1
a52é—al—a3—a420(becauseal—aQEHinF)

1
a1+ a3+ ag + as > 5 (same reason)
al, NN SN
Q2 045—2 O%} 064_041_4 5 A

which concludes this case, and we have

1 1 1
F63041+043+O!4§5—9,0424'04421,@14-0434-2@425

. Here, we have

Ny

The remaining case is (iii), where a; + a3 + s > 3 and o + oy <

=1-9¢

DO | —

1
O!1+O!2+OZ3+3O!4S(OZ1+O&3)+2(O[2+014)§ (5—0>+

so that as may be as large as ay. If oy + 2a4 > 1, then as + 204 > 1 and neither Theorem
applies for a5 = ay. In particular,

—0

DO |

a2+a3 +2a4 = 2(&24‘0&4) + (((1/1 +O!3) — (a1 +012)) S

48



This gives us
1 1 1 1
F7:a1—a2§1,a1+a3§5—0,a2+a4§2,a1+2a42§

If a + 204 < %, then we must have as + ag > i to avoid Theorem 2. This is the most

difficult case, so let us start with a few observations. We have

az—a3:((a1+a2)—(a1+a3))2%— (%—0) =0

which implies

1
a2+a3+a4+a5§2(a2+a4)—(a2—a3)S5—0
and
1 1 1
a1:(a1+a3+a4)+(a2—a3)—(a2+a4)254—9—1:1—1-0

of which the latter implies

1 1 1
a3 = (g +a3) —ag < (2 0) <4 +0> 1 0

which in turn implies

1 1 1
a2+a3+a4:(a2+a4)+a3 S Z+ (Z—20> = 5—20
For sums involving a5, we require

1
O£1+O!3+O,/52—

\)

to avoid Theorem 2, since s + au < 1;

1
a1+a4+a5§§—0
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to avoid Theorem 1, since o + 2a4 < : and

bY

1
a2+a4+a52—

B

to avoid Theorem 2, since aq + g < % — 0. It is easy to check that this suffices.

This gives us the inequality system

\
6 <
< ay
l—ai—a3< (@5
<5—0—01— oy
a2 —ag <
7
which leads to
01420—OK
1
o)+ a3+ aq > §—true by def.

1
a9 + 2004 > 1 new condition
1 ..
a1+ ay < g 20 - new condition
a3 — ay > 0 - new condition
1 . .
ar — oy < 1 0 - derived earlier

If we remove superfluous conditions, we thus get the following regions:

F: >1 + <1 + <1 0 + 2 >1
1:01 —0g 2 4,0’2 a3 > 4,041 a3 > 5 , O Gy = 1
1 1 1 1 1
Frrao+az3< - op+as< - —0,on+as3> —,on+20u > -,c0+as+oa4 > —
4 2 2 2 4
1 1 1
F3:oz2+0z3§Z,a1+a42§,a2+a3+2a421

20



1 1
F4:a1+a3§5—9,a2+a3+a42§,a1+a2+a3+2a4§1—0
1 1 1 1
F5:a1+a3§§—0,a2+a42Z,a1+a3+a42—,a2+a3+a4§§—0

2

1 1 1
Fs:a1+a3+a4§5—9,a2+a421,a1+a3+2a42§

1 1 1 1
F73041—042§Z,Oél-l-Oé?,S5—9,042+044§Z,041+2044Z§
1 1 1 1
F83041+Oé3§5—9,042+C¥321,042+CY4SZ,a1+2a4§§,

1 1 1
a2+2a42Z,a1+a4§5—29,a1+a3+a425,a3—a429

When o is bigger than both I — a; and 1 — as, and we use the role reversal trick, we
simply let the computer check if the sum of any subset of {a, 3,1 — 0 — a1 — @y — a3, a4}
liesin [4 — 6, 1]. Here, the range for ay is [0, %]. The candidates are: ap+ au, o+ a3 + au,
1—-0—a1—as+ay, 1 —0—a; —az+ay, 1 —0 —a; —as —asg + ay. It is easy to check
that the other ones are outside.

Our treatment of Region F' is similar to that of the complicated parts of C4. The
contribution from the 2-dimensional form of F' is easy to evaluate with high accuracy. Then

we go through the 4-dimensional ”boxes” for each ”square”
[, o + Aa] X [ad, by + Ad]

and compare a lower bound for the corresponding 2-dimensional contribution with an upper
bound for the corresponding 4-dimensional contribution. For the purpose of evaluating the
latter, we check if there is (or might be) a point in the interior lying in one of the F’s

(i =1,...,8), and/or a point where a3 > max (3 — a1, 1 — as).
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To be able to perform numerical integration with high accuracy in A U B U C except for
some subregions of C'4, we must rewrite the inequality systems such that the range for each o;
is determined by the «;’s with j < i (for example). There is a straightforward algorithm for
doing this transformation, which means that I don’t have to go through all the calculations;
I'll just give the results. The algorithm goes like this: The system of inequalities that
determines a region R, together with the trivial requirements < a4 < a3 < as <y < %—9,
can be written as

fi(ar, 0z, 03,04) 20
fo (a1, a9, a3,04) >0
i (o, a2, 03,04) >0
Combining the f;’s with a negative coefficient for a4, with those with a positive coefficient

for a4 while keeping the remaining ones gives a new system

g1 (061,012,063) Z 0

()
g (a1, 09,03) > 0

and in the obvious way one also gets

hi (a1,09) >0

02



b (01, 02) > 0

and in the end one gets the range for a; - a convex subset of the real line, i.e., an interval.
Then, the next step is to divide this range into smaller intervals according to which h;’s are
”dominating”, i.e., which pairs of inequalities h; (o, a2) > 0, hj (o, a2) > 0 with negative
coefficient for ay in h; and positive coefficient in h; imply all the other ones. Then, for a
given range S for (a1, az), one does the same with the requirements for as. Unless we end
up with just two g¢;’s (a lower and upper bound for «3), we have to split up S accordingly
following the same procedure as above, and consider each subregion separately. Of course,
the final step (including a4) is done in a similar way and the whole procedure is terminating.
Fortunately, in some regions the splitting is fairly simple.

The results are presented in a form valid for 0 < 0 < ﬁ. In the calculations (Chapter 5),
I will assume that 6 = % When I give the constraints that a region is defined by, these are
always meant to be in addition to (not instead of) constraints already given for any region
containing it.

Recall that the two-dimensional Region A is defined by: iy +as > 2, a1 —as < 6,00 < 1.

Region A; (defined by o + a3 < %—0, Qg+ a3+ ay > %,al +as+az+2a4 < 1-—6) becomes

{ 3 { 3\
1 1,0 1 1,98
4§061S4+2 4§Oé]_§4+2
s—oa <ap < s—a <ap< g

S e U < ’

1 _ 1-b-a1—as 1-b—aj—ay 1_pg_

i~ 73 < 3 3 <az3<5;-0-—m

1 _ _ < < 1 _ < < 1-0—ai1—as—as
5 — 02— 03> 0y Q3 [ 2 Q=03 >0 S —— 5 )
\ /
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.
1,8 1 1,6 1
Z+§SCM1S1+0 Z+§§a1§1+0
o —0 <o <i o —0<ap <y

U< R 4

i<y g e Cay < j -0 -
1 _ 1 o 1-0—ai1—as—as
g — o3 <oy < g g — a3 <oy < /22
L 2 ) \2 2 b,

{ 3\ 4
1 1,8 1 1,8
iSasgt; iSasgt;

s—a <ap< g s—a <ap< g

S » U < >
1 a2 %—9—041 %—9—041 1
L2 <y <22 7 < a3 <35 —20—2a; +a
giazras <oy <o Ta;iag <ay < % —0—a; —az

\ / \ y,

( 3\ 4 \
1,8 1 1,8 1
Z+§S(X1SZ+0 Z+§§(11§1+9
a1—0<a2§% 041—9<042§i

U< . U < . ’

1 9 1 g9
R B R R R
1 _ay—a 2—ar—a
\ 2 22 2 <y <o 2 22 3§C¥4§%—9—041—043
J \ J
La < %—0,042 < %. Region B,

is defined by a; + a3 < % — 0,00 + 204 > i, which becomes

( ) ( 3
3 580 580 7
g S 1S P S <350
——algaggé 2a1—%+29<a2§§
9 ¢ U < 4
1 1 1 1
s 52 Sa3<g;—-0-o s 52 <a3<g;-0-m
1 a 1 a
\ s— % <ay<og ) \ 3— %S oa )

Region B, is defined by o + s < 3 — 6,1 + a3 > 5, a1 + 2014 > £, 0 + 3 + g > §, which
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becomes

U 4

U <

U 9

U <

3 4
3 2 2 5 0
s<o <3 5SS 53
1o <o <t I _ o <ay<a
5 1S 02 S 3 2 1 2=
¢ U < ’
%—Ofl<043<052 §—Q1<O,/3<Ck2
—%Smﬁ%—&—al) i_a2_a3<a’4<§ (9—0!1
/
\ ( )
2 340 2 340
5 <o < 5 S a1 S
% <oy < 2L TS o <P
> U < 4
- <o <Y - F-—a<az<a
i—042—043<044<——9—041J \i—%SOMS%—Q—OﬂJ
\ )
2 1 5 9 3—46
g§a1§§—29 15— 3 S0 <=
3a1-1 . < 1 MH075 <y < 2 240
Ll < gy <! U5 <oy < 200 — 2 4
p U < ¢
%—CM1<CM3<C¥2 Ofl—C\KQ—i-{-0<C\£3<C¥2
i—%SOMS%—@—CYl} i—a2—a3<0z4<5—0—a1}
3\ / 3\
5 _ 0 346 3-40 1
13 3 S < S FoSap <5 —20
1
2o -3 +0< <Y i<, <y
p U S 4
%—a1<a3<a2 al—ag—i+0<a3<a2
i—w—a<a<i—0-—o i—wm—a<a<i—0-o
) /
\ ( A
3-40 1 3-40 1
7 <ap <5—20 wosas<;- 2
U<y <2 —344 U <oy <20 —3+0
¢ U S 4




U U B

( ) (

\ ( \
3 z e 1 _ 7 n
g S a1 < g g Sa<;—0 6 =01 S g
501 <oy < g <oy <og—3 o — 2 <0y <3ap -3
P U < > U < 0
1_ 1 a 1 ar _ _3
5~ < a3 < 3 7 a3 < 5 F a3 <20 —ay— g
T—ar—a I«
%—Oé1§044§043 1o =< <oy 1o =< <oy
\ / \ 7 \ V,
( \ ( \
7 1 7 11
16 =01 S g 16 =01 S g
— 3 <y <3a;—2 30 — 3 <y <t
01 — g = 0 %901 — 4 Q1 — 4y S Q2> g
U < » U < ’
20 —ag — $ < a3 < ap %—041§a3§042
\ s—a<a<a ) k%—041§044§043
( 3 4 3
11 1 11 1
g <o <510 g Sap <5 -0
ap—3<ay <t a—3<ap <t
1— 3 S a2 < g > 1—5S <3 >
U< U <
L@ <g,< 2y —ay—2 200 —ay — 3 < g <
S a3 S 20 — (g a; — Qg S a3 S Qg
127 3 4 4
14y a
\ 1= —<o<og J s—on <oy <ay )

What is left is region C, defined by 0 < oy < ay, a7 + ag < % — #. Starting up with C1,
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defined by a; + o + a3 < 5 — 0, a4 > 3 we get

( 3 ( 3
1 1-20 1-20 1
g Sar < g 5 Sau<;—0
1 1 l*0*041
3 S < o 3 Sy < i
< ¢ U < 4
s <az<a s <3<
§§a4<a3 %S&4<Oj3
\ / \ /
¢ \ ( 3
1-20 3-80 3-80 1
5 S S 6 << y—0
1_g_ 1_g_
2 <y <y o m < <i-f-m
U < » U ¢
é§a3§%—9—a1—a2 %Sasﬁé—e—%—(h
s <oy <og s <oy < og

( ) ( )
1 3-40 3—40 1
I~ % <m<o i—%SOQS—E;_SM—Oél
9 ¢ U S 4
s—o—ay <ag<a s—o—a<ag<a
I s <au<i—-0-—oq - I s <au<i—-0-—0q -
R O % I € 7/ a1 — Qg W a3 = g = 5 a1 042}
/

349 1
6 <o <3—0

3 <<y

U 4 >

a1+a2—i+9ﬁa3§a2

| imw<au<i-f-a—ap
In C3, defined by a; + ag + ay < % — 0,00 + g+ ay > %, the splitting gives 15 regions for

each of the two convex subregions. We will therefore write them down in a shorter form,
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which is still easy to read.

Thus in C34, defined by as + a3 + 2a4 >

1

3, we get:

1420 <y < L L< <=2
6 — @1 =73 5 > %1 >y
Each of ,
5+0—a1 14+0—ay 1-3
Po— < <o 2 <ap < =
1
1_g_
%_al—a2<043< 2
combined with each of ,
%—al—a2§a4<a3
( 1
s—f0—a
2 2 - < a3 S Qg — 0
< ;
L _ < <l_pg_ _
5 T O] — 0y S0y S a; — a3
\
(
1 3-20 3-26 1-26
s S < T 1 So1 S
each of < ,
3
1-3a1 1-3a; 505
\ <as <o 5t Sap < 25
1

1_ o
: : 6 3
combined with each of :
i—as—oa3
s— <as < a3
( N L )
5—0V—a = —0—«
200 +ap — 3 <ag < 2 5 — <ag<ay -0
< ; &
o —ay<as<as %—041—02§044<%—9—061—0é3
/
1 3
© < gy <20

2

.
3-20 1-26
14 S (07] S 4
< 3
2—0—5ay
F—— < <o
\
%—0—041 1
<az<2a1t+ay—3
7
l_ay—a
o <u<;—0—a—os
=20 <y <2 -9
d R =10
an
3a1—1+30
o1 —5+ S o S % _ 0

combined with each of

2a1+a2—%§a3§a2—0
)

s—a—m<o<i—0—oa—o;

combined with each of



1_g_ 1_p—
2 = 2 alS&gS%—20—2C¥1+C¥2

1 _ o
5 3 S03< 2
1 )
L ho—a as—a
2o — <o <o 2o <y <y —0—a— o3
> i,a2+a3+2a4§ %, we write

Similarly, in C'3,, defined by a; > i, Qo + g > i, a3 + 20y

the solution as

<o <3-40
combined with each of
a1+0 1
P} SaQSG
1 %—G—al %—H—al 1
1 <oy <A 5 Say<1—0—a+ta
) ;
L <ay < L <as<i-—p
Z—ag_a4_a3 Z_OfQ a4_§— — 0] — (O3
<o <3—0 ) _ 5 <oy <205
combined with each of ,
1 1—6—a; 1 _ o3
g S g < § T 2 S0 S o3
1 %707041 %707(11 1
2a2_1§a3g 3 5 <O{3<Z—0—a1+a2
7 bl
i—Oé2<Oé4<Oé3 Z—OJQ<OJ4S§—0—041—043
l<a1<1—0 3—0<O[1<l—0
4 =% =79 10 = 1 =
each of ’
1-0—a3 3a1_§+30 1-0—a 1 _p_
<y < 5 T << -0-o
(
1_g9_
L <ay<2 a1
. . 12 =% ="
combined with each of < ,
| i- P <au<es
1 (
1 g-a
< a3 <2 —; 200 — <3< ;-0 -+
’< J
l_ s, <l _g—0— I e <ay<i—-0-—0a -
] 7 = W4 x5 (03] Q3 1 (&%) a4_2 (631 a3
\
i< <5-0 . .
combined with each of
3a1—1430
i A SOQS%—H—OQ



s <a3<g-% s~ 2 <03<5—-20-20 F o
Y ’
L _a 1_as p—@2—a3
s 2 <o s o Sy <
%—20—2a1+a2§a3§2a2—% 2a2—i§a3§i—9—a1+a2
Y
s 2 <au<; 00— —as i—w<a<;-0-—a —as

In the difficult Region C4, defined by oo + s + s < 3 — 0,01 + a3 + s > 3, we first

consider the easy case, where we have a; > i, a3+ qy > i which gives

4 N 4 \
T jSa <Y
g <o <X < <;—0-m
S > U < ’
1 1 5—f—a
S a3 < o S a3 < A
1 1
1 a3 < as <oy \ a3 < s <oy )
/7
( 3\ 4 3\
;S <2 < <30
I?S—QHSQQS%—G—OQ §§a2§%—9—a1
U< » U < ’
1
1_g_
22 <y < o s <oz <o
T—m<au<i—-0-am—oa; k T—as<a<as
V V

In C4(mediocre/hard) the procedure will be to treat the whole region as if it were to be
discarded - save that we may impose a3 + 2a4 > i in C4(hard) - and then do a computer

search for subregions that we may remove again. Thus C4(mediocre), defined by a; < i,
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becomes

( ) 4
1,20 1 1,20 1
sT3Sasg sT3Smsy
1 a 1 9 1 9
13 S<gi—3 g—§§a2§a1—9
X ¢ U < . ¢
1_g_
i~ << -9 <<
%—al—a3<a4§a3 %—al—a3§a4<a3
7
( \
1,20 1
st sasy
é—g§a2§a1—9
U< ;
1_g_
202a2§ 3 < Qg
<<y —f-a—a |
and C4(hard), defined by as + a4 < i < a3 + 204 becomes
( ( ) (
1 5 1 5 1 1
1501 < 35 1501 < 35 1< < ;+0
- <a<g f<a<;-0-a f<a<s-0-o
S ¢ U9 49X
i~ % <a3<m P~ <a3<g s <oz <oy
\5—041—043§044S043 %_051_043Sa/4§043J s—ar—a3<ay<i—os
{ A 4 A
5 1 5
L<a, <2 -2 3 200 <ap<t-0-a
g — &2 > 7} 1 1 1 2 1
U 9 > U < 4
s <ag <o § <a3<2-20
I o —a3<ay<t—a I —ay<ay<l-a
D) 1 3 >4 >3y 3 \2 1 3 4 1 3
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. \ ( )
1 5 5 1
1H0<a <3 5 S <3
2 2 <a<i—0-m P-4 <op<i-20
U < 0 U < 4
8 20 <3< % <<
%—%SCMSi—as ) \%—041—043§C¥4<043
\
( \ ( \ ( \
1 5 1 5 1
5 <o <j 5 <o <3 o< <3
1 1
%—2041§042§%—9—C¥1 %—2041§042§% sl <5;—0—a
U< > U < > U < >
3 1
1A <3< o2y 3201 <a3<a 1201 <3<y
1
s—op—a3<as <o s— 8 <a<o £ — % <ay <oy
\ 2 / \ / \ /
( \ ( \ ( \
<o <i—0 s<an<i-—0 s<an<i-0
1 1 1 1_p_
f<m<i-0-m S <ap <3 t<a<i—0-m
U< > U < > U < 4
1 1
§ <az<a 5 <oz < 3 Sa3<g
1 _ ag 1_ 1 _ as 1 _ a3 <« <o
\5_23Sa4g4 Ot3} \8 QSaﬁléaf}‘ L ) 2_0[4_ 3 J
r \
3 5

U < >

\ /

Finally, there is 051, defined by Q9 + Qi3 + Oy Z , 01 + oo + a3 + 2014 S 1-— 0, which

N[
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becomes

U

=

1_
2

\

U 9

1_
2

2
1-0
< <o <
1-6—«
Tl <ay <o

-2 <a3<

=
(VAN

Sl
IA
5
IN
R

5 U <

)
IN

NI
©

FN.
VAN

oy —az3 <oy < as

H =
N[

> U <

1—6—a;—as
3

s —az < ayg < ag

5 U <

s — a3 < ag < ag

63




5 Calculations (almost-primes in intervals)

Almost all the background we need has been discussed in previous chapters. Here is a very
brief summary. Let A denote the set of integers n for which mn € (x, T+ x%“} for some
m being the product of K primes between P and 2P, where PX ~ z%. To prove that the
interval (:c, T+ x%“] contains numbers with a prime factor > z'~?, it suffices to prove that

A contains prime numbers, which is true if we can prove that
S (A,x¥) >0
As explained in Chapter 3, this is true if the following holds:

$(B.a%) = X S(Bupr)

log py logp2)
( logz ’ logz €eE

S (BP1P2P3P4’ p4)

— Z min | S (Bp1p2ap2) ) Z or

(logm logpz)eF (IOgm logpy logpg 1031:4)EF
S (Bp2p3tp4ap4)

logz ’ logx logz ’> logz ’ logz ’ logx
- § : S(Bp1p2psp4ap4)

logpy logpy logpg 10gp4)
( logz ’ logz > logz ? logx €A1U...UC5;

- Z S (Bplpzpsmpspe ) P6)

(logpl logpy logpg logpy logps logpe)ex
logz ? logz ?logz * logaz ’ logz * logw 6

h Z S (Bp1p2p3p4p5pep7psap8) >0

(logm logpy logpg logpy logps logpg logpy Ings)EX
logz ’ logz ’ logz * logz ’ logz ’ logx ’ logz ’ logx 8

where Xg and Xg are 6- and 8-dimensional analogues of A; U ... U Fgy whose contribution
will be evaluated later. There are some parts of AU BUC U F (in 4 dimensions) which
have neither been discarded nor covered by Theorem 1, and they give rise to 6-dimensional
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regions. Xj thus consists of the "bad” parts of those. Xg is defined correspondingly in 8
dimensions, except that everything that is not covered by Theorem 1 is, for practical reasons,
considered a ”"bad” region.

The asymptotic formula for

Z S (Bpy..pir )

(e, lom) oy

logz "7 logz

is
1—0—ay—..—
/ / do, dak ( 5 a’“)
.. 3
(0‘15 aak EV
logq ZM ,
where g = and Y = T the ¥’s come from
K
( > p—s> _\2(m)
mS
P<p<2P

Dividing by Y everywhere simplifies the notation.

Thus the contribution from S (B,x%) is lf—ew <(11:3’)> = ﬁ, which in our case is
=

ﬂ = 1.0416666666... The contribution from region F can be written in a simple way, as we

here have 1—9—06% € [1,2]. With w(t) = 1 in this interval we get

// daldag
&1@2 1 —U— Q1 — 062)

(a1,2)€EE

which is 0.2323012939977473. This was found on using the previously mentioned Newton-

Cotes Quadrature Formula (special case)

To+6AT
Ax
/ y(x)dx ~ 110 (41yg + 216y + 27y, + 272y3 + 27Ty, + 216ys + 41ys)

Zo

and observing how quickly this converges with increasing number of checkpoints.
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In the other regions we typically encounter larger values of H““%‘“’“; for those I have
adopted the method for calculating w(t) described in [M1]. To sharpen the accuracy, the
program automatically splits any suggested integration where the values would fall on both
sides of 2 into two integrals with 2 as an endpoint. This is because w(t) has a cusp at t = 2,
as it is 1 in [1,2] and 280D iy (2 3],

There are some cases where we integrate over boxes located by a computer (this is done
for the complements of C4(mediocre/hard), for Region F' and for the 6- and 8-dimensional
terms). In these cases we use the exact (and basic) integration formulas

[ [T Ao,

; €[u;,vi]Vi

with possible modifications if some of the intervals intersect, i.e.,

[ f T (e

u<lop<..oa1<v

and we use a simple upper (or lower) bound for w which holds in the whole box.
To get a best possible result in Xg and Xg I also used the result

[ dndeg= 200
n.

Z1,--Zn€[0,1],> x;€[k—1,K]

where A(n, k) denotes the Euler number; see [K2]. Basically I looked up 6-dimensional
"boxes” of points (ay, ...,as) in which there was a positive part in which, for every g <
min (a4, H’_"“%_‘“), a1 + ag + az + a4 + B could be written as S; + S, where each term

would go into one of the S;’s and S; < % for each 7. Then the program would compare

possible reductions of the volume of the box and pick the best one. If it were possible
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797a17...7aﬁ)

1
to do the same with a; + ... + ag + S, the factor ( a"‘s"'

could be replaced by

a6
(maxw (1_0_0‘17__0‘8» (L L 1); the latter factor being equal to

as ag [’
ag
dOZ7
Q7
[

Clearly these are crude methods which are only acceptable because the contributions from

[ dos
ag

0

these regions are so small anyway. I also used upper/lower bounds for the Buchstab function

in all the "box-search cases”. For example, we have w(z) < % for every x > ¢, where ¢

satisfies cloge =1, so ¢ = 1.76322...

As a rule of thumb, decimals that remained unchanged when the number of checkpoints
in each dimension was doubled were accepted, although the change in the next decimal was
considered. The results were:

S (B, x;g) +1.041666666666666....(+)

Region FE —0.2323012939977473 (-)

Region A ~—0.0070119 (-)

Region B —0.0638410 (-)

Region C'1 —0.0012679298 (-)

Region C2 »0.002119988 (-)

Region C3 —0.0246993 (-)

Region C4(easy)—0.0154415 (-)

Region C'4(mediocre)(total)—0.00628690 (-)

Region C4(hard)(total - upper bound)—0.05044928 (-)

Region C4(mediocre/hard)(removed - lower bound)
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— 0.001166912 + 0.0210369316 = 0.0222038436 (+)

Region C5 »—0.0210566 (-)

Region F'(2-dim. estimate minus lower bound for removed part)
— 0.790357746958687954 — 0.17088863515 < 0.61946911181 (-)
Regions Xg, Xg(upper bound)—0.0107548463 (-)

Total sum > 0.00917 > 35-

On switching back from B to A, we multiply by wij and obtain:

h If 0 1 1-6 1 $%+52% .
Theorem 4 If 6 > o, then S (.A,x D ) > 16 Togz for every positive ¢ and all suffi-

ciently large x.
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6 The results of Bombieri et al.

This Chapter is devoted to a summary of the relevant results of [B4].

Let € be a ”small” positive number as usual, and let x ~ X stand for X < x < 2X. Let

{om}ronss {Bntnens {Vq}qNQ and {0,}, p be four sequences. We define

lef] = (; Ozm2>;

and the meaning of || 5| is corresponding. We shall assume that the sequences satisfy some
or all of the following conditions:

(A)) M=z N=z", withe<v<1-—c.

(A2) {B,},n is well distributed in arithmetic progressions to small moduli, that is, for

anyd>1,k>1,1#0, (k,1) =1 we have

> g O A< IBI N @) (og2N)

n=l(mod k),(n,d)=1 (n,dk)=1

with some B > 0 and any A > 0, the constant implied in < depending on A alone.
(An) 7] < 7@, 6] < 7(r)", QR <.
(A4) B, =0 if n has a prime factor < N.

maNHgymﬁ<(;umﬁ2

Lif (m, P(z)) = 1 with 2o < exp (102)1%);)

(AG) QO =
0 otherwise

Bombieri et al. then give estimates of the sum

D(M,N,Q,R) = Z Yq0r Z Z B — @ ZZ

g~Q,r~R,(gr,a)=1 m~M,n~N,mn=a(mod gr) M,n~N,(mn,gr)=1

under various conditions on M, N, () and R.
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Lemma 5 If (A1) — (A4) are satisfied, then we have

D(M,N,Q,R) < lla]| [|]2* (logz) ™
with any A > 0 provided

#*R < N < z°min {x%Q’%, 2Q SR, xQ*QR*%}

Lemma 6 If (A1) — (As) are satisfied, then we have

D(M,N,Q,R) < lla]| [|]2* (logz) ™
with any A > 0 provided

rrerranl(2) () 3

Lemma 7 If (A1), (A3) and (Ag) are satisfied, then we have

D(M,N,Q,R) < |8l 27~ M3

provided

M > xf max {Q, z QR Q%R, x72Q3R4}

Lemma 5, Lemma 6 and Lemma 7 are Theorem 1, Theorem 2 and Theorem 5* of [B4].

On applying Heath-Brown’s combinatorial lemma

A=Y v (1) X mentm) X g

ml,...,mjga;l/‘] Nn1...NjM1...M; =N

(Lemma 5 of [B4]) they deduce
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Corollary 8
T _
Z Aa) (¢ (z;9,0) — —> < z (logz)™
(o) ¢(q)
g,a)=1
for any well factorable function A(q) of level Q and any A > 0 where a # 0, Q = T77¢ and

the constant implied in < depends at most on €, a and A.

This is Theorem 10 of [B4]. The linear sieve then gives the constant 7 as previously
mentioned (see Chapter 2). To see that the conditions of Lemma 5-7 allow Q = z7°¢

requires analysis. In the next chapter I will derive the complete set of conditions that follow

on assuming ) > :v%, from which this can be deduced.
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7 The method for twin primes

When analyzing the conditions in Bombieri et al.’s theorems, a central problem is: What is
the range for N (or M) for a given value of QR? If we assume that QR = x%_s, then we

can apply at least one of Lemma 5, 6 and 7 if either

or condition (Ag) is satisfied with M > z21, as we shall see soon. When (4) is split into pieces
in which the summation range for each term has the form [K, (1 + €) K], there is always a
subset of the terms whose product is in a satisfactory range, when J = 7. On the other
hand, when QR > x%, a "hole” around z7 is formed that prevents a direct use of prime
numbers in the analysis (at least with the representations of these that we know). We shall
treat the case QR > 7 by introducing a function h(n) which is never smaller than I(n), the
characteristic function for primes, and which is a sum of functions each having a factor in
the required (restricted) ranges. By the ”Fundamental Lemma” (mentioned in Chapter 2)

we then have

m(@) =Y In)l(n+2) <> hn) (AT 1) (n+2) =Y AT(d) > h(n)

n<z n<zx d<z+2 n<z,n=—2(mod d)

and the RHS can be estimated when we know ) h(n).

In the analysis of the conditions of Lemma 5-7, we will do the following simplifications.
First of all, we will ignore all z**-factors. Clearly these factors don’t affect the value of
the constant we end up with, and if we (as we will do here) end up with a (seemingly)
irrational number, we can just round off upwards at a suitable point and forget about the
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e-s altogether. For the same reason, we may also read an inequality "z < y” as "x < y” if

y — x can be arbitrarily small (as in our treatment of almost-primes in intervals). Finally, it

log N logR

o T etc. We have already introduced
ogx’ logz

is simpler to work directly with the exponents
N = 2%, and we also put R = z*. Since the product QR is so important, we put Q = z?~°
so that QR has a simple form. The conditions of Lemma 5 then become

1—9
pgl/gmin{iﬂ

3
,2—5ﬁ+4p,1—219+7p}

Suppose 9 is fixed. Since both the LHS and the RHS are increasing functions of p, the range
for v for which there exists a satisfactory p is equal to the range for p for which there exists
a satisfactory v, which implies: We may replace ”< v <” by ”<”, solve for p, and this is the
range for v. This yields

p < =2t p<1-19

§ p<2-59+4p (= p>2 o

p<1—20+% p> 49 —2
\ 7

\ /
which reduces to
49 —-2<p<1-9

as we are assuming that 9 > %. In the same way, the conditions of Lemma 6 yield

( ) ( 3

p§%—19+3—” p>29—1

Y P<EQ—9+p) (T p<3(1-0) ¢

— 30 4 3 p<2—30
\ / \ /
which reduces to

20 -1<p<2-—-39
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for the same reason. Note that both these inequalities imply ¢ < %; therefore we cannot
achieve anything for ¥ > %
Lemma 7 refers specifically to {c,}, so let us take M = z#. Here we have a more direct

approach to the determination of the range. The conditions are

(@) p>9—p
(i) p>—-14+9+3p

SN S
(#10) p 2 ——

(i) p>-2+4+30+p

The value of p that gives the largest range for y under the conditions () and (ii7) is p = g,
for which the condition is > 22. Since 9 < 2, the conditions (ii) and (iv) are also satisfied
20
?.

ifp:gandu>

We summarize what we have found so far as follows. For a fixed ¢ in the range [%, %},
we have an analogue of the Bombieri-Vinogradov Theorem for the function h with exponent

19, if it is a sum of functions each having a factor such that if its size is x”, then either
ve20—-1,2—39U[49 —2,1— 9]

or the factor satisfies (Ag) and v > Z.
Suppose we know the sizes of the ”prime” factors of a function. Can we simplify the
search for a factor in the interesting ranges? Since the boundary % is inside the interval

[49 — 2,1 — 9], the most important case is the one in which each (Ag)-type factor has support
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below 2*?~2. Then we can use the following more general result with A =29 —1, B = 234,
C=49—-2and D =1—19. We will see later that the range indicated is in a sense best

possible.

Lemma 9 Suppose 0 < A< B<(C <DXK % with 2A < D. Let {z;} be a finite set of

positive numbers smaller than C with Y x; = 1, and let M be the sum of a subset =. Then
there is also a sum of a subset in [A, B]U [C, D] if either (a) A+ C < M < 2B or (b) for

every integer n > 2, M belongs to either
0,1 - A—nC],

[1 —nB, A

or

o ([Etodlofe-n)

n—1 n—1

ﬁ([1+(n—1)A_nD

,B—A] U[l—l—(n—l)A—nD,A]).

Proof: We shall assume throughout that the conditions on M are satisfied, and that
there is no sum of a subset in the required range, and arrive at contradictions. Thus we may
assume without loss of generality that at most one element in = and at most one element in
its complement are smaller than A, and that the other z;’s lie in (B, C'). Indeed, if z; and z;
are two elements in = smaller than A, then their sum is smaller than D by the conditions of
the Lemma, and the statement that there is a sum of a subset in [A, B|U|[C, D] (the desired
contradiction) is even stronger with {x;, z;} replaced by z; + z;. We call this to ”combine”
z; and z;. The same argument applies for the complement of =. Now, if (a) is satisfied, then
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the requirement M > A + C implies that at least two of the elements in = lie in (B, (),

which conflicts the other requirement M < 2B: contradiction. Assume that (b) is satisfied

1-A-B

henceforth. On taking n to be larger than , one can see easily that M < A. Under

our assumptions, M is thus equal to one of the x;’s. To derive a contradiction we will select

n to be the number of z;’s between B and C'. This number can’t be < 1, as it would imply
Y i <M+A+C<24+C<D+D<1

hence the restriction ”n > 2” which avoids division by zero in (5). If M <1 — A —nC, then

we get the impossible inequality
 ai<M+A+nC<1
Similarly, if M > 1 — nB, then we get
in >M+nB>1

It remains to derive a contradiction from the hypothesis ” M belongs to (5)”. If there isn’t

an z; below A other than the one in =, then it suffices to consider

Me [&T,D—O}U [C—B,

nD —1
n_

n—1

Let z; and z3 be the smallest and the largest z; in (B, C) respectively. Thus if

then we have

M +1 1- M
Lo DMAL <M+4z,<M+C<D
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so that the sum M + x5 lies in [C, D]: contradiction. Similarly, if

nD —1

C—-B<M<
n—1

then we have

1— M DM +1
C<M+B<M+z <M+ _ oM A1
n n

D.

It remains to investigate the case in which there is an z; in the complement of = below A,
which can not be combined with any of the z;’s above B. In this case we shall see that it

suffices to consider

M e ([H(”_;)A_”D,B—A U[1+(n—1)A—nD,A]>

Let z; be the element in the complement of = below A, and let x5 be the smallest x; above
B. If

M>1+4+(n-1)A—-nD
then we have

1—-—M — 1-M -1 1—-—M —1)A
o143y < o 4 T _ +(n—1)r, - +(n—1)
n n n

<D

which means that z; and z5 can be combined, contrary to our assumption. Finally, if

14+ (n—1)A—-nD
n

<M<B-A

then clearly we have

M+ <M+A<B
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so to avoid

M+z € [A, B]
we must have x; < A — M. But this gives, as above,

LMt (=D 1= Mo DA-M)_1e(-DA_,
n n "

$1+$2§

This concludes the proof of Lemma 9. O
Let us see what this gives in our case where A = 29 — 1, B = 2 — 39, C = 49 — 2,
D =1 —19. The range

[A+C,2B]

in (a) becomes

(69 — 3,4 — 6]

which is non-empty if ¥ < % We only need to consider sums that are less than %, and since

this interval is symmetric about %, we can replace it by

1
[619—3, §:| .

When ”translating” the range (b), we must find the union of [0,1 — A — nC]U[1 — nB, A]
and (5) for each n > 2, and then find their intersection.
The case n = 2: Both [1 —nB, A] = [69 — 3,29 — 1] and (5) are empty, since

1+(n—1)A—-nD
n

,B—A|U[1+ (n—1)A—nD, Al =[29 — 1,3 — 59]U[40 — 2,29 — 1] = ()

and this leaves us with [0,1 — A — nC] =[0,6 — 109].
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The case n = 3: We have
[0,1—A—-nClU[l —nB, Al =[0,8 — 149 U[99 — 5,20 — 1] =0

so we are left with (5), which is the intersection of

[nC’—l

,D—C}U[C—B,nD_l} _ [1219—7
n—1

5 ,3—519]u [719—4,2_319]

n—1 2
with

,B—A}U[l—i—(n—l)A—nD,A]: [#,3—519%[719—4,219—1]

[1+(n—1)A—nD

This is easy to simplify, since

and

2-3

3-50 < <29-1

The first of these two observations implies that either [122- 3 — 50)] and [, 3 — 50| are

129-7
2

([%,3—50} U {719—4,#}) N ({%,3—5&} u[7q9—4,219—1]>

both empty, or < T4 in either case we can write the region as

With the second observation, it is easy to see that the intersection is equal to

[%,3— 519] u [719— 4, ﬁ]

The case n = 4: The interval [0,1 — A — nC] = [0,10 — 18¥] is empty, and we shall see

that (5) is contained in [1 — nB, A] = [129 — 7,29 — 1]. Indeed, the smallest number in

[nC—l

,D—C] U [C—B,nD_l]
n—1

n—1
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(if any) is at least min (”ncjll, C — B) = min (% — 3,70 — 4) = 79 — 4 which is bigger than

129 — 7, and the largest number in

1+(n—1)A—-nD
n

JB—A| U[1+ (n—1)A—nD, Al

(if any) is at most max (B — A, A) = max (3 — 59,29 — 1) = 29 — 1. So the interval we end
up with is
(129 — 7,20 — 1]
The case n > 5: The interval [1 — nB, A| covers [0, A], so this doesn’t give any further
restriction.

The intersection: What remains is to observe that

— 92—
0,6 — 109] N ([7%—4,3—519} U [719—4,7?”9]) N[129 — 7,29 — 1]

= [max (o, ?, 129 — 7) ,min (6 — 109, 3 — 519, 20 — 1)}

U [maX (0,70 — 4,129 — 7) , min (6 — 109, #, 209 — 1)]
= [max (7193_4,1219— 7) .3 — 519} U [719— 4, min (6— 109, 2 _2379)}

= [max(7193_4,1219—7> ,3—519] U [719—4,2_2379}

- the last simplification follows from

2—-39 1
2 2

(79— 4) + £ (6~ 109)

Lemma 9 doesn’t settle the general case, but the region we have ended up with here is

optimal, as the interested reader can check with the following examples:

4
r1=20—1,29=03=2—30,04 =49 — 2 (for?<19<§>
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1
11 =350, 20 =70 — 4,23 =24 =2 — 30,25 =49 — 2 (for%<19<1—(7))
273 ==Y (s 1y 0
Iy = 9 ,$2—$3—$4—2 OI'7 17
7 — 4 1-9 4 17
T, = 3 ,3:2:...:368:—3 for?<19<2—9
17 10
$1:1219—7,$2=...:l'5:2—319 (for%<ﬁ<ﬁ>

If 9> %, then there is a problematic "hole” between 3 — 59 and 719 — 4 here. We shall

therefore assume that

4 7
z <
7<V< 13
T9—4

from now on. In this range, we have 5= > 129 — 7. We may therefore summarize our

findings as follows:

Corollary 10 Suppose % <9< %, and let {x;} be a finite set of positive numbers smaller

than 49 — 2 with Y x; = 1. If there is a sum of a subset in

-4 2— 30 1
ol

then there is also a sum of a subset in
(20 — 1,2 — 39] U [40 — 2,1 — 0]

To avoid having to mention ¥ in every other sentence, I will assume that 9 is fixed in the

rest of this Chapter.

Definition 1 A function f(n) (n < z) has a convenient factorization if it is possible to

express it as

k(i)
> a > [19:(s9)

i SjES(’i,j)Vj,Sl...sk(i):n j=1
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where the a;’s are constants, the k(i)’s and s;’s are integers, S(i,j) = [2709), (1 4 )27(9)]

for all i, j; and for every i we either have (a) There is a set U such that

D (6, 4) € [20 - 1,2 - 39| U [49 — 2,1 — V]

JjeU
or (b) There is a j such that g;; satisfies Ag and v(i,j) > 2. (As indicated in Chapter 2,

the g’s and their convolutions may be referred to as “factors”.)

With Corollary 10 we may extend the range under (a) with

79— 42— 30 1
R L

provided that we avoid functions with just two ”large” factors, neither satisfying Ag. Our

object is to find a function h(n) which satisfies the following criteria:

e h(n) has a convenient factorization

e h(n) >0, and h(p) > 1 for any prime p

e > h(n) is as small as possible

Let

I = [2 _2319,20 - 1]

Iy =[1-19,69 — 3]

I, =[4— 60,9
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Iy =[3— 49,39 — 1]
30
IG - |:2- 219, ?:|

172[1—8,1]

logp

logs 1 I; for 1 =

Let [3; denote the characteristic function for prime numbers p with

1,2,3,4,5,6,7, and let x(n) denote the characteristic function for integers whose prime

factors are all bigger than L = 2°%"~¢. We shall see what convolutions of the B;’s and x

(later referred to as the ”"building stones” of h) give functions with convenient factorizations,
and later find a linear combination of these which is a suitable candidate for h(n).

One may assume that h(n) = 0 if n has a factor m satisfying

logm

€20 —1,2— 30| U[40 — 2,1 — o]
log x

for otherwise, it would be trivial to add or subtract a convolution of characteristic functions
for primes in regions near the prime factors of n - and this has a convenient factorization by
definition.

If n has a factor m satisfying

logmE 9 —4 2_319—5
37 2

log x

then it follows from the shape of the ”building stones” of h that h(n) = 0.

Finally, if n has a factor m satisfying

logm

1
R
log x € [6 3’2]
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then the argument of Lemma 9(a) shows that one may assume that h(n) = 0 (as in the first
case), except when n has only two prime factors. But in the construction of A, we will make
sure that h(n) = 0 whenever n has 2 or 3 prime factors (for reasons to be explained later).

The following result is a simple generalization of a result by Heath-Brown (private com-

munication).

Lemma 11 The function x(n) has a convenient factorization, and so does any convolution
(x*g)(n) where g(n) is equal to one of x(n), B,(n), ..., B,(n) or a convolution of these, as long

as there is always a piece corresponding to a factor x supported above 5 in any splitting.

Proof: With z = exp (\/log ac) we have

p>L P>z 2<p<L
(20 (s (L1
- (Z - > exp ( K;L (ps + 2 + T + ))
_ Z(n) N 1 _ BT
= (Z o > (exp ( K;L ps>) exp ( K;L (2p25 + 3550 + ))
= (1Q20Q3

nS

i
The function Z(n) in @y satisfies Ag. @2 is a linear combination of expressions (Z @)
where P has support below L, and only those with 7 < /logz contribute to the terms with

n < z. And clearly no Dirichlet coefficient of
1 P(n)\’
P ()

is bigger than 1 in absolute value. ()3 is negligible because the number of positive integers

below x with a squared prime factor bigger than z is O (:U exp (—k\/log ac))
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If no factor x(n) produced a convenient factorization, there would be a piece
ZxPr*x .+ P
where the support for Z has the form
[:vg, (1+ S)xq

with { < 49 — 2 (since Z satisfies Ag), and the support for each P; has the form

with K; < 7’93—’4 (since they are smaller than % and may not belong to [7’93—’4, %]) The

79—4 < 2—39

sum of any two K;’s must also be < %, since 2 X 5= < =5, and trivially this extends

to the sum of all of them. And since

19_
%+(419—2)<1—19

we would also have ¢ + ) K; < 49 — 2 < z. This concludes the proof. O

We now have 17 functions we can use:

92(n) = (x * x)(n)
g3(n) = (x * x * x)(n)
94(n) = (B * x) (n)

g5(n) = (B * x * x) (n)
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By a representation for n I mean the intervals I; that

g6(n) = (By * By * x) (n)
g7(n) = (By* By * x * x) (n)
gs8(n) = (By * x) (n)
go(n) = (By * x * x) (n)
gio(n) = (By * By * By * x) (n)
g11(n) = (By * By * x) (n)
g12(n) = (B3 * x) (n)
g13(n) = (By * By By * By + x) (n)
g1a(n) = (By * By * By * x) (n)
gi15(n) = (By * B3+ x) (n)
g16(n) = (By * By * x) (n)

g17(n) = (By * x) (n)

It is trivial to see what values these functions produce for square-free values of n, but I am
including a table for the record. As I mentioned in the proof of Lemma 12, we need not
worry about numbers with a squared prime factor. There are 15 types of factorizations of n

that have to be considered, corresponding to the 15 partitions of the number 7.

1

of n, so that for example (1114) represents the n’s for which

N = P1P2P3P4
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with

lo 1 1 lo
gpl, ngg’ 0gPs e l; g D4 eI,
logz " logz " logzx logx

This is the table: The horizontal entries are the representations, the vertical entries are
the functions, and the table values are the function values for the integers having those
representations. Unfortunately, there is not enough room for the definitions of the functions

g;; this may make checking slightly inconvenient.
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5

92

g3

g4

gs

e

gr

gs

99

g10

g11

g12

913

914

gi5

J16

gi7

16 25 34 115 124 133 223 1114 1123 1222 11113 11122

1

1

1

1 1 1 1 1

16 16 16 32 32

81 81 81 243 243

3 2 1 4 3

24 16 8 64 48

0 2 0 4 0
0 0 6 0 2
1 0 0 0 0

111112

64

729

160

20

320

32

60

120

120

1111111

128

2187

448

42

1344

To find the optimal combination of these functions is not as difficult as it might appear

with the number of different cases we have here - if we make a few reasonable assumptions.
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As we shall see in Chapter 8, the contribution to
2 n
m\n,m>1:>ll%§s—7:ellu...UI7
from numbers with few prime factors is rather much bigger than that from numbers with
more prime factors. We will therefore assume that our function A(n), a linear combination

of the g;’s, satisfies

1 if n is a prime
(6) h(n) =

0 if n has 2 or 3 prime factors

This can for example be achieved by selecting

1

h(n) = 301(n) — Soa(m) + 505(n)

which conveniently also produces nonnegative values for integers with at least four prime
factors.
Let ny, 4, denote any integer with representation (;...t,). We then have, for any choice

of h(n),
6h(n7) — 2h(n16) — 6h(n25) — 3h(n34) =+ 3h(n124) =+ 3h(n223) — h(n1222) =0

which gives

h(n1222) =6

provided h satisfies (6). This can be checked using the table. Some other identities that I

found are:
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(7) 6h(n7) — 12h(n16) — 5h(n34) + 6h(n115) + 6h(n124) + 6h(n133) — h(n223)

—h(n1114) — 6h(n1123) + h(n11122) =0
(8) 30h(n7) — 30h(nis) — 6h(nes) — 25h(nss) + 15h(n124) + 20h(n133)
+10h(n1114) — 10A(n1123) — 5h(n11113) + A(n111112) = 0
(9) 90Ah(n7) — 105h(n3s) — 126h(ny115) + T0h(n133)
+105h(n1114) — 35h(n11113) + A(n1111111) = 0

If we, for short, replace h(n1114), h(n1123), h(n11113), h(n11122), h(n111112) and h(n1111111) by

A, B, C, D, E and F respectively, then we get from (7)-(9) together with (6) the identities

(10) A+6B—D =6

(11) — 104+ 10B +5C — E = 30
(12) — 10544 35C — F = 90

We require all of A, B, C, D, E, F to be nonnegative, and they should be as small as

possible - particularly A and B (as they correspond to only 4 factors). (10) implies

A+6B>6

Numbers with the representations (1114) and (1123) give approximately the same contribu-
tion (see Chapter 8), so it seems like the optimal choice is A = 0, B = 1. If we put C = 4,
D =0, E =0 and F = 50, then (10)-(12) all hold. The contribution from numbers with

representation (1111111) is extremely small, which means that the "high” value of F' is not a
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problem. So the question is whether C' could have been smaller. But then B would have to
be bigger ((11) gives 2B + C > 6), and the contribution from numbers with representation
(11123) is more than twice as big as the contribution from numbers with representation
(11113) (the quotient is indeed much bigger), so this wouldn’t work.

Finally, a combination which does produce the desired values is

h(n) = 3g1(n) — 292(71) + %93(”) — go(n) — égls(n) - 2914(71)
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8 Calculations (twin primes)

Although our function h(n) only produces positive values for integers with representations

(7), (1123), (1222), (11113) and (1111111), we shall see what contribution other numbers

would have given to > h(n) to justify some assumptions we made in the construction of

h(n). Since we can easily construct functions which take care of integers with a factor m
m

such that 11%%;_:8 is not in any of the intervals Iy, ..., I, we may assume that all nontrivial

factors m (not only the prime factors) satisfy

logm

elLU..UIg
log x

By the Prime Number Theorem, the number of integers below z of the form p;...p; for a

given range for each p;, 1 < i < k — 1 is asymptotically

Z

Dh1 |
Z lop1 pkw _logxz Z Z ng

lo
Plye-sPl—1 gpl---iﬂk— Pr-1 gpl Pk 1

z / dly / dls / dli_1 log
logz | lilogly J lylogly ™ lk,lloglk,llogﬁ

which after the substitutions /; = 2%, 1 < i < k — 1 becomes

/ d.’l?l / diEQ / dﬂ?k_l 1
10g$ Th—1 1— T — oo — Tp—1

Thus, with the notation we used in Chapter 7, we have

3" h(n) logw Z) (h(ntl...ti) /t t)

n<z (t1...8;

[=

92
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S5

29—1

/_/d_xL_lo 39(29 — 1)
w ) T1-z 20— 9)(2-3v)

2-39
2
49—2
/ _/ de 1 2020 - 1)(30 1)
s ) zl-z 22— 30)(3— 40)
2—39
69—3
/ / g 3020 = 1) _/
" xl—x_ 20— 9(2-30) Ji
29—1 29-1
/ _ / dzy / dr, 1
115 T To 1— r1 — T2
2-39 T1
2
29—1 49-2
/ / d.’L'1 / dxz
124 i) ]. — T — T9
19
29—1
/ / dIl d.’L‘2 1
133 To 1-— Tr1 — To
19
g Y-z
/ . / d:vl d:I;Q 1
293 Al To 1-— Tr1 — T
2-39 T1
29—1 29—1 29—1
/ _ / d.’El / deQ / diL'g 1
1114 T T T3 1 —x1 — 29 — 23
% z1 max(z2,1—0—z1—x2)
29—1 29—1 d—x1—x2

/ _ d.’L‘l / d.’L’Q / % 1
1123 1 2

I3 1-.1'1-.%2-.1'3
= T1 1—9—x1

29—1 l—xq l—xz]—xo

/ - / dz, 7 dz, / ds 1
1222 1 T2
9

T3 1-.1'1-.(52-333

5 —T1 T2
Y-z d—z1—mo
3 2 V—x1—T2—T3
d.’l?l d 2 d.fl?g d.fE4 1
1 i) I3 X4 1—.1‘1—£C2—$3—.1'4
T1 max(z2,1—%—x1—x2) z3
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29— 1+z l—z1—z9—2
29— ki s 1 2 3

1 20—1+xz1—T2 2
/ / d.Il / dl‘g / d$3 / d$4 1
11122 T2 3 Ta 1 =21 —To— T3 — T4
19 max(z2,l—9—x1—12) 1-9—x1
9 9—zp YI-zo—ug
4 3 2
dﬂ?l d.??z dﬂ’)g d$4
—= — — =
111112 X2 T3 Ty
“9 max($1,3_4192_3m1) maX(582,1*’19*$1*$2) z3

V—To—T3—T4

d$5 1
- 9
T5 1—.’1?1—...—.’1?5
Z4
1 -z 1zzy =2y lzey—2p—ag
7 6 5 4
dzq dzs dzs dzs
= - - — — —
1111111 Z Z2 L3 L4
2—230 max(wl, 4—450 7:81) max(z2,1—9—x1—xz2) T3
l-zy—29—23—24 l—zj—z9—z3—T4—2T5
3 d 2 d 1
T5 Tg
_> _— —
Ts Tg 1—331—...—336
T4 zs5

All the "nontrivial” limits of integration here can be derived from
> melsig
i€S,zi€l;(;) ies
which is to hold for any set S of indices.
To get as high accuracy as possible when computing these using (once again) the Newton-
Cotes Quadrature formula, I will split the integrals so that there are no max-expressions -

the same as I did in the end of Chapter 4 (but this time with the integrals written explicitly).

We have
1—-9— zq
2 29—1
/ / d.’l?g / d.’L‘g 1
1114 i) I3 1-— Ty — T2 — T3
1-9—z1—x2

1-9

3 29—1 29—1 29—1 29—1 29—1
+ dCL’l d.IQ d$3 1 dl’l d.IQ dxg 1

X1 I3 1—11?1—.’1}2—$3 I3 1—$1—$2—$3
2-39 1— 19 1—d—z
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Let
Y—x1—To—T3
1

/(5,1) B 1 / dzy
Ty 11— — X9 — T3 — T4

T1T273

z3
l—ml—mz—m3
2
(5,2) _ 1 d$4 1
T1T9T3 X4 1- T1 —T9 — X3 — T4
1-9—z1
Y—zg—z3
(6) 2 V—T2—T3—T4
1 dxy dxs 1
T1T2T3 X4 I5 1- Ty — ... — Tp
x3 T4

l—zj—z9—T3—T4—2T5

l—z)—xz9—x3 l—zj—z9—w3—2T4

Ja— /d_/d_ [
Ts £C61—£E1—...—£U6

T1T2X3 T4
xr3 T4 s
Then we have
1-9 1-9—mzg d—x1—2x9 1-9 d—z3 Y-z —z9
3 2 2 3 3 2
(5,1) (51)
/ =/ dzq / dzo / dasg/ + / dxq / dxo / da::;/
11113
2—39 T1 1—Y9—z1—x2 2-39 1-9—zq o
2 2 2
9 Y-z Y—x1—x9
4 3 2
(5,1)
+ / dxy / dxo / dxg/
1-9 T1 T2
3
1—9 1-9—w 1—-9 29—14x7
3 2 20—1+zx1—2 3 2 20—-1421—x2
(5,2) (5,2)
/ = dxy / dxo / dx3/ + / dx / dxo / dac3/
11122
2-39 1 1—-9—z1—22 2-39 1—9—xy T9
2 2 2
2914z
29—1 a3 20—1+4xz1—22
(5,2)
+ / dzq / dzo / dl'g/
1-9 T1 T2
3
3—49 1-9—=z I—z9 1-9 1-—9—z D)
5 2 3 T3 2 3
(6) (6)
= dIl dl‘z dl‘g + dl‘1 dxg d$3
111112
2—23«9 3—49—3zq 1—9—z1—2> 3—54ﬂ T1 1-9—z1—22
2 2
1-9 2 I—x2 2 i) Iz
3 4 3 1 4 3
(6) (6)
+ dxy dxo dxs + dxy | dzxo dxs
2=39 1-d—z; T2 1-9 z1 z2
2 2 3




4—59 1—9—x l1—xy—29 1-9 1—9—mz l1—z1—xo
8 2 5 3 2 5
(M (7
/ = / d.’El / dﬂ?g / d.’L‘g / + d.’L‘l / de‘Q / dﬂ?g /
1111111
2-39 4-59 1-9—x1—x2 4—59 1 1—9—xz1—x2
2 1 N 2
1-9 -z l—xq—x9 1 11—z l—xz1—xo
3 6 5 (7) 7 6 5 (7)
+ dxy dxs dxs + dxq dxs dxs
2-39 1-9—m T2 1-9 T T2

2 2

The function W (z) is the same for this sequence as for the sequence of primes + 2, because

there are no small prime factors. Therefore, if one doesn’t use the switching principle, the

"new” constant one ends up with is

4
(13) — <1+/ +6/ +4/ +50/ )
(Y 1123 1222 11113 1111111

which has its minimum value at ¥ = 0.5785507. (It has the form

0-o(l-)

so we don’t need to do any calculations to know that the minimum value is below 7.) Here

we have, with 7 decimals accuracy (although the integration formula allows a much higher

/ =/ =2.019172 x 107!
16 34

/ = 2.429480 x 107*
25

accuracy)

= 2.098307 x 10 2
5

= 3.883109 x 102

—

124

=1.199154 x 1072
33

= 1.800771 x 1072
23

—
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/ = 1.238156 x 1073
1114
/ = 1.044879 x 1073
1123
/ = 5.041910 x 10~*
1222
/ =1.236947 x 107
11113
/ = 7.453181 x 1076
11122
/ = 3.490074 x 108
111112
/ = 4.037450 x 10~
1111111

The value of (13) is &~ 6.9423095, which is not even as good as Fouvry and Grupp’s result.
We shall now apply the switching principle, following Pan’s/Fouvry and Grupp’s approach
with the improved form of the last term, so we let A be the weighted sequence given by h(n)

with 2 added to each term, and consider

(14) 7a(x) < S(A, 2) + O(2) < S(A, 21) — %Ql + %QQ +0(2)+0 <£>

21

where

Ql = Z S(Apazl)a QQ = Z S(Ap1p2p35p2)

21<p<z 21 <p3<p2a<p1<2

We have z; = z°1, z = ¢ where the values of the constants will be approximately £, = 0.150,

& =0.244 and ¥ = 0.578. In the calculations, we shall assume that the following inequalities
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hold:

1<E<E<g
26, +& <0
26, +3¢>1

26, +E< 1

Some of these are observations, that ease the calculations in retrospect, made from the
optimal choice.

The problem about using the switching principle is that we simply can’t switch the
sequence given by h(n). This particularly affects our evaluation of Qy; the evaluation of the
other terms is pretty much as in [F2].

The first step in evaluating €, is to write A as {primes} + {other terms}. The primes
can then be treated as in [F2], and we are left with ”other terms”. As a next step one would
attempt a direct estimate of {25 with the linear sieve and get the bound

4|B‘& /// @@%F =11 — 1ty — 13
log x 2e7 ty 3 i3 ty

§1<t3<t2<t1 <€

S P L —
_IOgl‘ 2 t1 T2 t3 QO—tl—tQ—tg

&1 <tg<ta<t1<€

where ¢ is 4 or % according to whether the sequence B comes from a function with a

convenient factorization or not. (Here I used that F(s) = 25 for 0 < s < 3.) In fact, based
on our observations in Chapter 7 (p. 89-91), it is easy to see that (8, * By * By * 55) (1)
must be treated separately with sieving limit ac%, whereas the rest can be approximated from

above with the function
1 1

Egla(n) +591(n)
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which, for a square-free number n produces the value 1 if n has representation (1123), 4 if
it has representation (11113), 6 if it has representation (11122), 30 if it has representation
(111112) and 140 if it has representation (1111111). As usual, we annihilate numbers with
factors in the ranges that we have discussed before.

But the direct linear sieve estimate only works if
t1+ta+t3 <

which is not true in the whole range of integration. In particular, 3¢ > ¥. One way to go

about this problem is to note the inequality

, -2
(15) Z ) (Ap1p2p3ap2) < Z MS (-Aplpzapz)

m -1
21 <p3<p2<p1<2 21<pa<p1<z (p17p2)

where m = m (p1, p2) is the maximum number of prime factors in the interval [z;,z) for
integers near z, divisible by p;p, and with no prime factors below z;. (Of course, the linear

sieve gives the upper bound

48, // dhdt, 1
logx tota p—t—ty
&1 <t2<t1<¢
for 3° S (Ap.pssD2), as 5E; > 1.) Indeed, for a fixed term in A, Y S (Ap pops, P2) counts
the number of prime factors in this region except two of them, and ) S (A,,,,p2) counts

the number of prime factors except one, assuming there is no prime factor below z;. To

determine m when p, py, 2; and z are given is not too hard:

Lemma 12 Suppose 0 < A < B < 1. Let m be the maximum number of x;’s that can be

< B if{z;} is a set of numbers > A with > z; = 1. If [%] > [%}, then m = [%], otherwise

1—B:|

m = [1=2].
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Proof: [L4] is clearly an upper bound for m, and if [£] > [4], then we can take

1
m
with m = [ﬂ On the other hand, if we have [ﬂ = [%}, then it is not possible to have

x; < B for each term. Indeed, this would lead to

< (] s

Therefore, in this case there is one x; which is > B. This implies that
< 1-B
m _—
- A
and since we can take
T1=w.=Tp=A4A tp1=1—Am>B

for this value, the proof is complete. O

Of course, whether we use < or < in the limits does not affect the numerical value in

the end. So for our application, we will plug in A = — ttf_ o B = tf_ 5 (where ¢; is related

to p; in the usual way), add 2 to the resulting m (since we have calculated the number of

possible factors in addition to p; and ps) and obtain the following result:

Corollary 13 If [17?242] > [I*t{t?], then m = 2 + [1*?7;”} =1+ [1;1], otherwise

m=1+ [—1_2_5} .
With our values of & and & we have generally

1=t —t,]
[ ¢ ]_2

because & < % and 2&, 4+ 3¢ > 1, and the conditions can be simplified as follows:
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e Ift; + 4ty > 1, then [1_?72_1:2} =2, andm=1+ [%;_6} =3

o Ift; + 4ty < 1 < t; + btg, then [1’?72"52] >2,andm:1+[%] =95

. Ift1+5t2<1,thenm=1+[%} —6

We may now find the exact region in which it pays off to use (15). We have

t2
@ 1 _ 1 10gt2(§0-t1—t2—§1)
t3 QD—tl—tQ—tg QD—tl—tQ fl(gp—tl—th)

&

which has to be compared with
1 m— 2
QY — tl - tz m—1

where m depends on t; and ty as lined out above, under the restriction ¢; + 2, < . A

possible rewriting leads to comparison of

ta(p—t —ty — &)
&1 (90 — 1 — 2t2)

with

and it turns out that in the region

{(t1,t2) [ & <t <t <&}

we have:

ta(p—ti—ta— &) 3

> exp —
§1 (gO—tl —2t2) 4
ta(p—t1 —ta — &) 3

< exp —
&1 (W_t1_2t2) p4

t1+4t2>1, t1+2t2<g0:>

t1+5t2<1:>t1+2t2<g0,
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for either value of ¢. So if ¢; + 4ty > 1, then the factor ¥(t1,s) in

/dt1/dt2 (t1, t2)
to 1—1 — 1y

3
i,

% otherwise 1t is

3

3 tz(SD—tl—tz—f1))

| i -
og min <exp 1 E (o=t = 2b)

It only remains to write down the integrals and give the numerical results. Since

5 T3
we can use the formula
s—1
2e” log(t —1
F(s) =5 |1+ / %dt
s

2

for 3 < s <5 to get an upper bound for S(A, z;), namely

2 _q

€1
log(t—1 C.
1+ / log(t—1) 4, <1+/ +6/ +4/ +50/ >%x
A t 1123 1222 11113 111/ log”x

If 2 < s <4, then we have

S

log(s — 1)
$

f(s) =2¢"

and since £, > g, 26, + € < ¥, we conclude that the lower bound for Q; = Y~ S(A,,2) is

z21<p<z
log (— — 1 C
4/— <1+/ +6/ +4/ +50/ )Lf
: t(ﬂ_t 1123 1222 11113 111111/ log™x
1
Let
p+& (Bexpd —1) =/ + & (Bexp? —1)" - 20, (1 +exp?)
7“1( 1a90) = 4



p—ti+§ (2eXp%—1)—\/(w—t1)2+5?(2e><p%—1)2—261(90—1?1)

/ +4/ +6/ +30/ +140/
1123 11113 11122 111112 1111111

We shall now give the upper bound for ©y, = S(Apipsps; P2). For the prime
z1<;03<;02<:01<z

T2 (517 ¥, tl) =

number part, Fouvry and Grupp derived the bound

8 1-— tl — t2 - t3 dtl dtg dtg CQJI
w PN 3
1+ 61 t2 tl t2 t3 log xT

&1 <ta<ta<t1<€

(with the roles of t, and t; switched) under the conditions + < & < £, which follow from
our assumptions. To maintain the accuracy when using numerical integration, we shall split

this up according to the integer part of

1— b — by — tg
ta

We have

1 1<s<2

w(s) = ¢ Hoel=l) o5 5 <3

S

s—1
%<1+log(s—1)+ i %du),3<s§4
\ 2

Since we also have 5, +¢& < 1, the contribution from the prime number terms can be written

as
3 131 12 5 131 1—t1—t
/@/dtz dt; 1 +/dt1/dt2/dt31°g( o 3—2>
] ) ittt ) ) 6 l-ti-ta—ts
8 & & 6 6 &
1-§1-t3
_ 3 1-t1-3t t1—t
/ dt, / dt2 [ dts log( / dt, / dt, / " dty 108 (7 * - 2)
s 1—t1—t2—t3 s ts 1—t —ts—t3
&1 1_4t1 &1
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I-ti—t3 4 1t1t32

Eoon [ lesng, log(u-1) ;.
. / dty / dty [ dts 9 . / dt, / /dt3 2 u
t1 to t3 11—t —to—t3 tz 11—t —to—13
& &1 &1 &1
1-t;—t )
1- §1 t1 t12 - log(u—1)
1—ty —4ty f oglu=2) duy

/dtl / dty / dty % v > 8 Cyr
t3 1—t1—t2—t3 1+§110g2ﬂ3

/

The contribution from ”other terms”, which we have just been discussing, is

n(ed) log 2i=1=-6)

4 / dtl dtz 51(%*?51*2?52) (6/ )
7 — 1t — 1o 1222

¢ alnph) g, Gte6)
AN =08
b b2 %_tl_t2 1222
71(51,%) 31

i, dty 3
A J v ] | CL)
131 lo 7 —11—1o 1222
(61,2 1
Tdn [ dt, 8
A ] | L)
b log 7 —t1 —to 1222
5

T2 (61 ) % ’tl)
r1(€1,9) t1 t2(9—t1—t2—=¢;)

dt dt, 108 =551
/ “i1 “e2 E1(0—t1-2t2) J(’l9)
tl tz 19 - tl - t2

& &
3 r2(€1,9,t1) ta(9—t1 —ta—&,)
4 / % / @log 251(19jt1f2t2)1 J(ﬁ)
t1 to 9 —t — 1ty
r1(€1,9) 31
1
Todn [ d, 3
1 2 1
il LR S 1)
+ t1 / to U —1t; —to ( )
7‘1({1,’19) ’I"2(§1,’l9,t1)
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/dt1 / dty, § 7(9)
Y —t; — 1o

’51 9, tl

1-t4

£ t1
+ /% / @(éxfifun_'_ 37 (0) ) Cox
t ty \3—ti—ty V—t—1ty log”
. d

4

The optimal choice of parameters appears to be, with 7 decimals accuracy,

9 = 0.5782797
¢, = 0.1503298

£=0.2441184

which gives

S(A, 21) < 7.72661 031718;°5%

0 > 2.18284 213424; 5%

0y < 0.39444 30770210%2

and by (14), our "new constant” is 6.83241 07886. High accuracy is preserved everywhere

in the calculations and allows this many decimals.

Theorem 14 For sufficiently large x, we have

ma(x) < 6.8325C,
]og z

This is a modest improvement of Wu’s 6.8354.
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